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Artificial neural networks (ANNs)
• ANNs are:
 inspired by the neural networks in human brains

| 4

[1] Figure taken from: https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE (Accessed on 22.06.2022)

[2] Hornik, Kurt; Tinchcombe, Maxwell; White, Halbert (1989). Multilayer Feedforward Networks are Universal Approximators (PDF). Neural Networks. Vol. 2. Pergamon Press. pp. 359–366.

Microlecture MachineLearnAthon | Neural Networks 15 January 2026

https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE


Biological and artificial neurons
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Figure taken from: : https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
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Artificial neural networks (ANNs)
• ANNs are:
 inspired by the neural networks in human brains
 flexible machine learning models that can (theoretically) 

approximate any continuous function to a given 
accuracy, i.e., they are universal approximators [2]

 able to handle large input and output dimensions and 
big training data

 very commonly used in various supervised  and 
unsupervised learning applications

• In this lecture, we will focus on ANNs for regression 
problems
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[1] Figure taken from: https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE (Accessed on 22.06.2022)

[2] Hornik, Kurt; Tinchcombe, Maxwell; White, Halbert (1989). Multilayer Feedforward Networks are Universal Approximators (PDF). Neural Networks. Vol. 2. Pergamon Press. pp. 359–366.
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Biological and artificial neurons
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Figure taken from: : https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
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Universal approximation theorem
• Assume:
 A single hidden layer of arbitrary size (number of 

neurons)
 A non-polynomial continuous activation function, such 

as the sigmoid function, in the hidden layer
 Linear activation in the output layer

• It can be demonstrated that the neural network has the 
capability to approximate any function𝑓𝑓 𝑥𝑥 :𝑅𝑅𝑛𝑛 ↦ 𝑅𝑅 with 
arbitrary precision

| 8Microlecture MachineLearnAthon | Neural Networks 15 January 2026



Nomenclature in a feed-forward ANNs

Image: https://upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Example_of_a_deep_neural_network.png/640px-Example_of_a_deep_neural_network.png
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Activation function
• In both artificial and biological neural networks, a neuron does 

not just output the bare input it receives

• Action potential firing in the human brain inspired activation 
functions in ANNs [1]

• There exist several possible activation functions, e.g.,

 Hyperbolic tangent function 
f(x) = tanh(x) 

 Saturates quickly (For x ≥ 5 almost constant, gradient 
vanishes)

 Rectified Linear Unit (ReLU) 
f(x) = max(0,x)

 Used in deep ANNs
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[1] Montesinos López, O.A., Montesinos López, A., Crossa, J. (2022). Fundamentals of Artificial Neural Networks and Deep Learning. In: Multivariate Statistical Machine Learning Methods for Genomic
Prediction. Springer, Cham. https://doi.org/10.1007/978-3-030-89010-0_10
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Presenter Notes
Presentation Notes
Neurons in artificial and biological neural networks have an activation function step.
Activation function is like the rate of action potential firing in the brain.
It transforms the weighted sum input before producing the final output.
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Simple example
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Simple example - step 1 & 2
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Step 1: 
𝑧𝑧1 = 𝑤𝑤11 ⋅ 𝑋𝑋1 + 𝑤𝑤21 ⋅ 𝑋𝑋2 + 𝑤𝑤31 ⋅ 𝑋𝑋3 + 𝑏𝑏1 = 1

𝑎𝑎1 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑧𝑧1 = 1

Step 2:
𝑧𝑧2 = 𝑤𝑤12 ⋅ 𝑋𝑋1 + 𝑤𝑤22 ⋅ 𝑋𝑋2 + 𝑤𝑤32 ⋅ 𝑋𝑋3 + 𝑏𝑏1 = 43

𝑎𝑎2 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑧𝑧2 = 43

W32  = -1

X1 = 
10

X2 = -2

X3 = 1

𝑧𝑧1
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒
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W12 = 3

W11 = -1

b1 =10

𝑧𝑧2
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎2

W22 = -2

W31 = 3

𝑧𝑧3

Input 1

Input 2

Input 3

Input layer Hidden layer Output layer
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Simple example - step 3 & 4

| 13

Step 3:
𝑧𝑧3 = 𝑤𝑤4 ⋅ 𝑎𝑎1 + 𝑤𝑤5 ⋅ 𝑎𝑎2 + 𝑏𝑏2 = −50

�𝑦𝑦 = 𝑧𝑧3 = 0

Step 4:

𝐿𝐿 =
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − �𝑦𝑦 2

W32  = -1

X1 = 
10

X2 = -2

X3 = 1

𝑧𝑧1
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎1

W21 = 1

W12 = 3

W11 = -1

b1 =10

𝑧𝑧2
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎2

W22 = -2

W31 = 3

b2 = -10 

𝑧𝑧3

W4 = 3

W5 = -1

�𝑦𝑦

Input 1

Input 2

Input 3

Input layer Hidden layer Output layer
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Matrix representation of neural networks

| 14

• Taking the input – hidden layer section
 Computation of the values to pass to the activation function 

(z) follows:X1 

X2

X3 

𝑧𝑧1
𝑧𝑧2 =

𝑤𝑤𝑖𝑖11 𝑤𝑤𝑖𝑖12 𝑤𝑤𝑖𝑖13
𝑤𝑤𝑖𝑖21 𝑤𝑤𝑖𝑖22 𝑤𝑤𝑖𝑖23

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

+ 𝑏𝑏1

𝑧𝑧1
𝑧𝑧2 = 𝑤𝑤𝑖𝑖11 ⋅ 𝑥𝑥1 + 𝑤𝑤𝑖𝑖12 ⋅ 𝑥𝑥2 + 𝑤𝑤𝑖𝑖13 ⋅ 𝑥𝑥3 + 𝑏𝑏1

𝑤𝑤𝑖𝑖21 ⋅ 𝑥𝑥1 + 𝑤𝑤𝑖𝑖22 ⋅ 𝑥𝑥2 + 𝑤𝑤𝑖𝑖23 ⋅ 𝑥𝑥3 + 𝑏𝑏1

𝑧𝑧1
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎1

𝑧𝑧2
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎2

b1

Input layer Hidden layer
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Matrix representation of neural networks

| 15

• Taking the hidden layer – output section
 Computation of the values to pass to obtain the output (z3) 

from the activation function outputs (a) follows:

𝑧𝑧3 = 𝑤𝑤ℎ11 𝑤𝑤ℎ12
𝑎𝑎1
𝑎𝑎2 + 𝑏𝑏2 = 𝑤𝑤𝑤𝑤11 ⋅ 𝑎𝑎1 + 𝑤𝑤ℎ12 ⋅ 𝑎𝑎2 + 𝑏𝑏2

𝑧𝑧1
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎1

𝑧𝑧2
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎2

z3

b2

Hidden layer Output layer
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Choosing activation functions for hidden layers
• Activation function choice is influenced by 

the problem type [1].
• Sigmoid/Logistic and Tanh functions have 

bounded outputs (between 0 and 1 for 
Sigmoid/Logistic and between -1 and 1 for 
Tanh) which can lead to gradient 
saturation, contributing to the vanishing 
gradient issue [2].

• ReLU (Rectified Linear Unit) has become
popular due to its non-linearity and
avoidance of gradient saturation. However,
it has its own limitation, the "dying ReLU"
problem.

| 16

[1] Baheti, P. (2021) Activation functions in Neural networks [12 Types & Use cases]. Available in: https://www.v7labs.com/blog/neural-networks-activation-functions (Accessed on 10.01.2024)
[2] https://www.engati.com/glossary/vanishing-gradient-problem

Sigmoid function
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Dying ReLU
• "Dying ReLU" is a common issue in deep neural networks 

with the Rectified Linear Unit (ReLU) activation.
• It occurs when ReLU neurons consistently output zero, 

preventing them from learning.
• This happens because of zero gradients during 

backpropagation when inputs to ReLU are persistently 
negative.

• Variants like Leaky ReLU and PReLU were introduced to 
mitigate this problem by allowing learning for negative 
inputs.

| 17Microlecture MachineLearnAthon | Neural Networks 15 January 2026

Presenter Notes
Presentation Notes
"Dying ReLU" is a common issue with Rectified Linear Unit (ReLU) activation functions in neural networks, particularly in deep networks.
It occurs when ReLU neurons consistently output zero (remain "dead") for all inputs during training.
This problem arises because if the weighted sum of inputs to a neuron is consistently below zero, the ReLU activation outputs zero, resulting in zero gradients during backpropagation.
As a consequence, the weights of the neuron are not updated, and the neuron fails to learn and remains inactive.
Variants of ReLU, such as Leaky ReLU and Parametric ReLU (PReLU), were introduced to address the "dying ReLU" problem by allowing a small gradient or slope for inputs below zero, promoting the continued learning of neurons even for negative inputs.




Large variation of activation functions in deep learning

| 18

Image taken from: theaidream.com Available in: https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
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Presenter Notes
Presentation Notes
Including that new variants like Leaky ReLU, Parametric ReLU (PReLU), or Exponential Linear Unit (ELU) were developed to address some of the limitations of standard ReLU.
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Choosing activation functions for output layers

| 19

• For Regression tasks: Linear activation function is used.
 Produces continuous output for numerical predictions.

• For Binary Classification: Sigmoid/Logistic activation function is employed.
 Squashes output between 0 and 1, ideal for binary decisions (e.g., yes/no).

• For Multiclass Classification: Softmax activation function is utilized.
 Assigns exclusive class probabilities, ensuring the sum equals 1.

• For Multilabel Classification: Sigmoid activation function is chosen.
 Allows activation of multiple classes independently for cases with multiple labels.

• ReLU (Rectified Linear Unit) should not be used in output layers because of its unbounded 
nature, which can lead to instability during training and make it challenging to interpret the 
model's predictions.

Microlecture MachineLearnAthon | Neural Networks 15 January 2026

Presenter Notes
Presentation Notes
For Regression tasks, the Linear activation function is used because it produces continuous output, allowing predictions for numerical values.
In Binary Classification, the Sigmoid/Logistic activation function is employed. It squashes the output between 0 and 1, making it suitable for binary decisions, like yes/no or true/false.
Multiclass Classification benefits from the Softmax activation function, which assigns exclusive class probabilities, ensuring that the sum of class probabilities equals 1.
Multilabel Classification relies on the Sigmoid activation function. It allows multiple classes to be activated independently, making it suitable for cases where multiple labels can be applied.
ReLU (Rectified Linear Unit) should not be used in output layers because of its unbounded nature, which can lead to instability during training and make it challenging to interpret the model's predictions.
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Which activation function is typically used for
Regression tasks?

38/38 Question slideJoin at: vevox.app ID: 165-026-438

A) Sigmoid/Logistic
0%

B) Tanh
0%

C) Linear
0%

D) Softmax
0%
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Which activation function is typically used for
Regression tasks?

38 Showing Join at: vevox.app ID: 165-026-438

A) Sigmoid/Logistic
7.89%

B) Tanh
7.89%

C) Linear 81.58
%

D) Softmax
2.63%

✓
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What is the primary advantage of using the
Sigmoid/Logistic activation function in Binary
Classification?

37/38 Question slideJoin at: vevox.app ID: 165-026-438

A) It produces continuous output
0%

B) It squashes the output between 0 and 1 
0%

C) It allows for multiple class activations
0%

D) It prevents the vanishing gradient problem
0%
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What is the primary advantage of using the
Sigmoid/Logistic activation function in Binary
Classification?

37 Showing Join at: vevox.app ID: 165-026-438

A) It produces continuous output
0%

B) It squashes the output between 0 and 1 
97.3%

C) It allows for multiple class activations
2.7%

D) It prevents the vanishing gradient problem
0%

✓✓
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Why is the Softmax activation function preferred for
Multiclass Classification?

35/38 Question slideJoin at: vevox.app ID: 165-026-438

A) It produces continuous output
0%

B) It allows for multiple class activations
0%

C) It ensures that the sum of class probabilities equals 1
0%

D) It is suitable for binary decisions
0%
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Why is the Softmax activation function preferred for
Multiclass Classification?

35 Showing Join at: vevox.app ID: 165-026-438

A) It produces continuous output
0%

B) It allows for multiple class activations 42.86
%

C) It ensures that the sum of class probabilities equals 1 57.14
%

D) It is suitable for binary decisions
0%

✓✓✓
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When is the Sigmoid activation function typically used?

34/12 Question slideJoin at: vevox.app ID: 165-026-438

A) In Regression tasks
0%

B) In Binary Classification
0%

C) In Multiclass Classification
0%

D) In Multilabel Classification
0%
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When is the Sigmoid activation function typically used?

34 Showing Join at: vevox.app ID: 165-026-438

A) In Regression tasks
0%

B) In Binary Classification 64.71
%

C) In Multiclass Classification 11.76
%

D) In Multilabel Classification 23.53
%

✓
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Lecture outline
• Neural network basics
• Neural network training
• Architecture and hyperparameters
• Applications of neural networks for regression
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Training

| 30

Training 
inputs

Predictions

Compute error and 
necessary derivatives

Microlecture MachineLearnAthon | Neural Networks 15 January 2026

Artificial neural 
network

-

Training 
outputs

Backpropagation 
algorithm

Error 
(also known as loss)



How does a loss function look like?
• Cross-Entropy Loss (Log Loss)
 Type: Classification
 Formula: ℒi = −∑𝑐𝑐=1𝑀𝑀 𝑦𝑦𝑖𝑖,𝑐𝑐 log(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙𝐶𝐶 𝑥𝑥𝑖𝑖 )

where 𝑀𝑀 is number of classes, 𝑦𝑦 is binary 
indicator (0 or 1) if class label 𝐶𝐶 is the 
correct classification for observation 𝑖𝑖

• Mean Squared Error (MSE) or L2 loss
 Type: Regression

 Formula: ℒ = 1
𝑁𝑁
�𝑖𝑖=1

𝑁𝑁 𝑦𝑦𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥𝑖𝑖
2

where 𝑁𝑁 is the number of samples, 𝑦𝑦 are 
labels and 𝑥𝑥 are the features 

•  
| 3215 January 2026Microlecture MachineLearnAthon | Neural Networks 



Training ANNs with gradient descent algorithm

| 33

ANN parameter (e.g., weight, bias)

Lo
ss 𝑤𝑤11′ = 𝑤𝑤11 − 𝛼𝛼 𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤11
(𝛼𝛼 :learning rate)

𝑤𝑤11𝑤𝑤11′

𝐿𝐿

𝐿𝐿𝐿

Microlecture MachineLearnAthon | Neural Networks 

(unknown) loss functionloss of ANN with 
parameter 𝑤𝑤11

loss of ANN with 
parameter 𝑤𝑤′11

15 January 2026

Presenter Notes
Presentation Notes
Objective: Minimize prediction error.
Iterative Process: Adjusting weights and biases to converge to optimal model.
Optimization Algorithms: Enhance training efficiency.




The two passes in neural network training
• The forward pass… 
 passes data through the network layer by 

layer
 applies weights in each neuron, adds a bias, 

and uses an activation function
• The backward pass…
 adjusts network weights to minimize 

prediction error
 computes the gradient of complex functions 

through chain rule

 uses gradient descent to find good 
parameter

| 34

j error

Forward function evaluation
Backward error and gradient evaluation

output y of
neuron (j)

desired
response (d)
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Example of backpropagation

| 35

W32  = -1

X1 = 
10

X2 = -
2

X3 = 1

𝑧𝑧1
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎1
W21 = 1

W12 = 3

W11 = -1

b1 =10

𝑧𝑧2
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒

𝑎𝑎2

W22 = -2

W31 = 3

b2 = -10 

𝑧𝑧3

W4 = 3

W5 = -1

�𝑦𝑦

𝑤𝑤11′ = 𝑤𝑤11 − 𝛼𝛼 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤11

(𝛼𝛼 :learning rate)

Example: Update 𝑤𝑤11

𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤11

= 𝜕𝜕𝜕𝜕
𝜕𝜕 �𝑦𝑦

𝜕𝜕 �𝑦𝑦
𝜕𝜕𝑧𝑧3

𝜕𝜕𝑧𝑧3
𝜕𝜕𝑎𝑎1

𝜕𝜕𝑎𝑎1
𝜕𝜕𝑧𝑧1

𝜕𝜕𝑧𝑧1
𝜕𝜕𝑤𝑤11
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What is the influence of the learning rate 𝛼𝛼?

| 36

ANN parameter (e.g., weight, bias)

Lo
ss 𝑤𝑤11′ = 𝑤𝑤11 − 𝛼𝛼 𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤11
(𝛼𝛼 :learning rate)

𝑤𝑤11𝑤𝑤11′

𝐿𝐿

𝐿𝐿𝐿
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The influence of the learning rate

| 37

ANN parameter (e.g., weight, bias)

Lo
ss

ANN parameter (e.g., weight, bias)
Lo

ss
ANN parameter (e.g., weight, bias)

Lo
ss

Too low Too highJust right

A small learning rate requires 
many updates before reaching 
the minimum point

The optimal learning rate swiftly 
researches the minimum point

Too large of a learning rate 
causes drastic updates which 
lead to divergent behaviours (e.g. 
overshooting)
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The influence of the learning rate in the convergence 
plot

| 38

Loss

Epoch

Very high learning rate

Low learning rate

High learning rate

Good learning rate
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Training deep networks using (mini) batches

| 39

• Batch Gradient Descent

 In traditional gradient descent, we update model parameters using the entire dataset in each 
iteration.

 Computationally expensive for large datasets. Can lead to slow convergence and high memory 
usage.

• Mini-Batch Gradient Descent

 Divides the dataset into smaller, manageable subsets called "mini-batches.“ Each mini-batch 
contains a subset of the data, typically ranging from a few to a few hundred examples.

• Advantages of Mini-Batches

 Reduced memory requirements

 Faster convergence: Updates are more frequent, allowing for faster convergence.

 Improved generalization: Stochasticity introduced by mini-batches can help escape local minima.
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Loss landscape

| 40

See animation online: https://losslandscape.com/explorer
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Example 1/3

| 41| Delft, 15 January 2026

…
# Define a simple neural network model

class Net(nn.Module):

  def __init__(self):

    super(Net, self).__init__()

    self.fc1 = nn.Linear(1, 10) # Input size: 1, Output size: 10

    self.fc2 = nn.Linear(10, 1) # Input size: 10, Output size: 1

  def forward(self, x):

    x = torch.relu(self.fc1(x))

    x = self.fc2(x)

    return x
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Example 2/3
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model = Net()

# Define loss and optimizer

criterion = nn.MSELoss() # Mean Squared Error loss

optimizer = optim.Adam(model.parameters(), lr=0.01) # Adam optimizer 
with learning rate 0.01
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Example 3/3

| 43

# Train the model

loss_history = [] # To store the training loss at each epoch

for epoch in range(100):

  optimizer.zero_grad() # Reset gradients to zero

  outputs = model(X) # Perform a forward pass to get predictions

  loss = criterion(outputs, y) # Calculate the mean squared error 
loss

  loss.backward() # Perform backpropagation to compute gradients

  optimizer.step() # Update model parameters using the optimizer

  loss_history.append(loss.item()) # Append the current loss value 
to the history list

Microlecture MachineLearnAthon | Neural Networks 15 January 2026
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Presenter Notes
Presentation Notes
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
�# Generate synthetic data with a nonlinear relationship
torch.manual_seed(0)
X = torch.rand(100, 1)  # Input features
y = 0.5 * torch.sin(4 * np.pi * X) + 0.2 * torch.sin(12 * np.pi * X) + 0.1 * torch.randn(100, 1)
��# Define a simple neural network model
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(1, 50)  # Input size: 1, Output size: 10
        self.fc2 = nn.Linear(50, 1)  # Input size: 10, Output size: 1
�    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x
�model = Net()
�# Define loss and optimizer
criterion = nn.MSELoss()  # Mean Squared Error loss
optimizer = optim.Adam(model.parameters(), lr=0.01)  # Adam optimizer with learning rate 0.01
�# Train the model
loss_history = []  # To store the training loss at each epoch
for epoch in range(100):
    optimizer.zero_grad()  # Reset gradients to zero
    outputs = model(X)  # Perform a forward pass to get predictions
    loss = criterion(outputs, y)  # Calculate the mean squared error loss
    loss.backward()  # Perform backpropagation to compute gradients
    optimizer.step()  # Update model parameters using the optimizer
    loss_history.append(loss.item())  # Append the current loss value to the history list
��# Plot the training loss
plt.plot(range(100), loss_history)  # Use loss_history instead of loss.detach().numpy()
plt.xlabel('Epochs')
plt.ylabel('Mean Squared Error')
plt.title('Training Loss')
plt.show()
��# Make predictions
X_test = torch.tensor([[0.2], [0.5], [0.8]])
predictions = model(X_test)
�print("Predictions:")
for i, x in enumerate(X_test):
    print(f"Input: {x[0]}, Predicted Output: {predictions[i][0]}")
�
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You observe the following learning curve. What is
likely the reasons for the increase of the loss over
epochs?

33/35 Question slideJoin at: vevox.app ID: 165-026-438

A) The learning rate is too low
0%

B) The learning rate is too high
0%

C) The wrong loss function is used
0%

D) The number of epoch is too low
0%
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You observe the following learning curve. What is likely
the reasons for the increase of the loss over epochs?

33 Showing Join at: vevox.app ID: 165-026-438

A) The learning rate is too low
0%

B) The learning rate is too high
93.94%

C) The wrong loss function is used
6.06%

D) The number of epoch is too low
0%

✓
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During the forward pass in ANN training, what is
calculated?

33/35 Question slideJoin at: vevox.app ID: 165-026-438

A) Gradients
0%

B) Activation Functions
0%

C) Output Values
0%

D) Weights and Biases
0%
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During the forward pass in ANN training, what is
calculated?

33 Showing Join at: vevox.app ID: 165-026-438

A) Gradients
15.15%

B) Activation Functions
12.12%

C) Output Values
57.58%

D) Weights and Biases
15.15%

✓✓
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In neural network training, why is gradient descent
often preferred over second-order optimization
methods like Newton's method?

33/17 Question slideJoin at: vevox.app ID: 165-026-438

A) Gradient descent is faster and requires fewer iterations.
0%

B) Second-order derivatives do not exist for deep networks because of the ReLU activation function

0%
C) Gradient descent is less computationally intensive.

0%
D) Second-order methods can be computationally expensive due to Hessian calculations 
and storage, making them less practical for large-scale neural networks. 

0%
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In neural network training, why is gradient descent
often preferred over second-order optimization
methods like Newton's method?

33 Showing Join at: vevox.app ID: 165-026-438

A) Gradient descent is faster and requires fewer iterations.
9.09%

B) Second-order derivatives do not exist for deep networks because of the ReLU activation function
30.3%

C) Gradient descent is less computationally intensive.
18.18%

D) Second-order methods can be computationally expensive due to Hessian calculations and
storage, making them less practical for large-scale neural networks.

42.42%✓
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Lecture outline
• Neural network basics
• Neural network training
• Architecture and hyperparameters
• Applications of neural networks for regression
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How to identify a suitable ANN architecture?

| 5215 January 2026

Figures generated in https://alexlenail.me/NN-SVG/index.html
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Wide or deep?

| 53

• Nomenclature
 Width 𝑊𝑊: Number of neurons in hidden layer
 Depth 𝐷𝐷: Number of hidden layers
 “deep learning”: depth > 2

• Complexity
 Fully connected network: # parameters ~𝑂𝑂(𝑊𝑊2 ⋅ 𝐷𝐷)

• Generalization
 Deep can learn intermediate features and may generalize better

• Depth and width are hyperparameters  optimize them!
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Underfitting and overfitting

| 54

Figure: https://miro.medium.com/max/1125/1*_7OPgojau8hkiPUiHoGK_w.png
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How to identify overfitting?
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Splitting the dataset into training, validation, and test
• The original data set is randomly divided into training, test 

and validation set according to a predefined ratio, 
 e.g., 70%:15%:15%

• The training is done using a training set
• The model complexity (i.e., #layers and #neurons) are 

chosen using an independent validation set
• The performance of data-driven models is evaluated on 

an independent test set

| 56
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k-fold cross-validation
• Cross-validation is a valuable alternative when dealing 

with limited training data.
• Instead of the traditional training/test/validation split, 

cross-validation randomly divides the dataset into k 
subsets.

• The model is tested k times, each time using a different 
subset for validation.

• Parameter scores from each fold are averaged to assess 
overall performance.

• Cross-validation ensures thorough testing across the 
entire dataset, enhancing model evaluation.

• While cross-validation provides robust evaluations, it can 
be computationally expensive due to multiple model 
training and evaluation iterations.

| 57Lecture 2 - Neural Networks for regression and classification 15 January 2026Microlecture MachineLearnAthon | Neural Networks 



Feeling like learning more…

| 58

• Test and explore the different effects the settings of a neural network can have in the output
 Visit playground.tensorflow.org  

 Play with the settings and reflect on your findings

Microlecture MachineLearnAthon | Neural Networks 15 January 2026
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If your neural network has overfit the training set in
modelling a product quality based on historical data,
what does it mean?

33/0 Question slideJoin at: 
vevox.app

ID: 165-026-
438

A) It makes accurate predictions for examples in the training set and generalizes well on 
new, previously unseen examples.

0%
B) It does not make accurate predictions for examples in the training set but generalize well on new, 
previously unseen examples.

0%
C) It makes accurate predictions for examples in the training set but does not generalize well on new,
previously unseen examples.

0%
D) It does not make accurate predictions for examples in the training set and does not
generalize well on new, previously unseen examples.

0%
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If your neural network has overfit the training set in
modelling a product quality based on historical data,
what does it mean?

0/0 Showing Join at: vevox.app ID: 165-026-438

A) It makes accurate predictions for examples in the training set and generalizes well on 
new, previously unseen examples.

0%
B) It does not make accurate predictions for examples in the training set but
generalize well on new, previously unseen examples.

3.03%
C) It makes accurate predictions for examples in the training set but does not
generalize well on new, previously unseen examples.

87.88%
D) It does not make accurate predictions for examples in the training set and does
not generalize well on new, previously unseen examples.

9.09%
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Surrogate models – a data-driven approach
• Surrogate models serve the purpose of simplifying the 

representation of a system's behavior [1].

• They enable efficient analysis of a system's key factors with 
minimal computational resources.

• Various techniques can be employed to derive surrogate 
models, including:

 Linear or nonlinear regression

 Projection onto subdomains using methods like POD (Proper 
Orthogonal Decomposition), SVD (Singular Value 
Decomposition), and DMD (Dynamic Mode Decomposition).

 Machine learning algorithms

| 63

[1] Gargalo, C., et al., 2021. Towards the Development of Digital Twins for the Bio-manufacturing Industry. In: Herwig, C., Pörtner, R, and J., Möller. 2021. https://doi.org/10.1007/10_2020_142
[2] Guo, S. An introduction to Surrogate Modeling, Part I: Fundamentals. Available in: https://towardsdatascience.com/an-introduction-to-surrogate-modeling-part-i-fundamentals-84697ce4d241
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• Optimization of FTS using NNs [3]
 Fernandes et al. used a NN in substitution to the complex reaction mechanism to estimate 

the product distribution and optimize the production of gasoline and diesel. 

Surrogate models – example in ChemE

[1] Palmer, K. and M. Realff. 2002. Metamodeling approach to optimization: Model generation. Trans IChemE. 80(7): 760-772.
[2] Mujtaba, I., Aziz, N. and M. Hussain. 2006. Neural network based modelling and control in Batch reactor. Chemical Engineering Research and Design. 84(A8): 635-644
[3] Fernandes, F. 2006. Optimization of Fischer-Tropsch Synthesis using Neural Networks. Chemical Engineering and Technology. 29(4): 449-453. Figure based on publication.
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Presenter Notes
Presentation Notes
The script of a replication of the paper;s approach is in the OneDrive (FTS_Fernandes_FFNN.ipynb) – my approach can decently predict the all products but the O9+ fraction.  

Inputs: Operating conditions
Outputs: Product distribution

Details of the training and approach in the textbox. 

Stress that the FTS follows a complex kinetic mechanism due to polymerization reactions and the heterogeneities of the catalyst structure and spatial ones (inside the reactor). 



• Prediction of microalgal lutein photo-production under dynamic conditions [1]
 Authors study how two robust ANN topologies (one vs. two hidden layers) can compute the 

rate of change in a fed-batch process (i.e., growth, accumulation, and production rates). 

Surrogate models – example in BioChemE

[1] del Rio-Chanona, E., Fiorelli, F. Zhang, D., Nuur, A., Jing, K and N. Shah. 2017. An efficient model construction strategy to simulate microalgal lutein photo-production dynamic process.
Biotechnology and Bioengineering 114(11): 2518-2527. DOI: 10.1002/bit.26373
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Presenter Notes
Presentation Notes
Authors simulated a fedbatch microalgal production of lutein (a valuable bioproduct with great potential fro the food, cosmetics, and pharma industries) – synthesized by Desmodesmus sp. In a photobioreactor

They evaluated two different approaches (1 vs 2 hidden layers)
The inputs are the biomass concentration, nitrate concentration, amount of product (lutein), concentration of nitrate in the inflow, light intensity. 
Outputs: growth rate, nitrate accumulation (uptake is hidden here),  production rate. 
The hyperparameter optimization was done using the elbow rule to finetune epochs and nodes in the hidden layer. (I found it nice to introduce this topic)
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• Prediction of microalgal lutein photo-production under dynamic conditions [1]

Surrogate models – example in BioChemE

[1] del Rio-Chanona, E., Fiorelli, F. Zhang, D., Nuur, A., Jing, K and N. Shah. 2017. An efficient model construction strategy to simulate microalgal lutein photo-production dynamic process.
Biotechnology and Bioengineering 114(11): 2518-2527. DOI: 10.1002/bit.26373
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Figure 2. Comparison of prediction results for topologies evaluated after
hyperparameter optimization, and experimental data. Taken from [1]

Figure 1. ANN inputs and outputs for the framework evaluated in [1]
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Presenter Notes
Presentation Notes
As an outcome of the surrogate, authors can describe the progress of a fed-batch fermentation stating the initial conditions of the state variables and from there compute the concentration of the biomass, lutein and nitrate. The figure shows the comparison of the fine-tuned 1HL and 2HL networks w.r.t. experimental values. 
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Learning goals of this lecture

| 69

After successfully completing this lecture, you are able to….
• Explain the fundamentals on artificial neural networks along with some of their limitations
• Explain the fundamentals on training with backpropagation
• Analyse a machine learning result in the context of overfitting
• Develop and implement neural networks in the context of basic (Bio)Chemical Engineering

applications (i.e., regression and classification)
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Assignment 2: Deep learning for regression

| 70

• Case study 1: 
 Illustrative 1-D case example
 Analyse influence of model complexity
 Assess the extrapolation capabilities of the model

• Case study 2: 
 Surrogate model of process simulations
 Implement a deep NN for predicting process variables

• Case study 3 (optional):
 Molecular property prediction example using QSPR
 Analyse the influence of molecular descriptors for predicting boiling temperature

Microlecture MachineLearnAthon | Neural Networks 15 January 2026



Thank you very much for your attention!
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