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Artificial neural networks (ANNSs)

® ANNSs are:

= inspired by the neural networks in human brains

[1] Figure taken from: https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE (Accessed on 22.06.2022)

[2] Hornik, Kurt; Tinchcombe, Maxwell; White, Halbert (1989). Multilayer Feedforward Networks are Universal Approximators (PDF). Neural Networks. Vol. 2. Pergamon Press. pp. 359-366.
. . Co-funded by the
geocr}ggiﬁrf unversitat gzgs“/ﬂA&(OO(. :;‘\\\IERZU"; Erasmus+ programme of
2 i 2 ;;% $ e E“rﬁa":ﬁ"’” Microlecture MachineLearnAthon | Neural Networks 15 January 2026 | 4
632 & 7, & B achine
v & LearnAthon

5
TUDelft


https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE
https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE

Biological and artificial neurons

Dendrites

Welg hts /! Axon Terminals

- Cell Body

y

Output

Artificial neuron

Inputs

SRZ Co-funded by the
. B 0 (]L,k \.\\\AR/J,‘
technische universitat a0y ™ Erasmus+ programme of

Figure taken from: : https://machineslearn.co.uk/wi-content/uploads/2018/01/bio|oqica|-neuron-1024x438.pnq

dortmund A 7; .
P 2 LIl g % £ t““"“"nea“:_”'“ Microlecture MachinelLearnAthon | Neural Networks 15 January 2026 | 5
., 1632 Ty, o I IVlachine
TUDelft s S * LearnAthon



https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png
https://machineslearn.co.uk/wp-content/uploads/2018/01/biological-neuron-1024x438.png

Artificial neural networks (ANNSs)

® ANNSs are:
= inspired by the neural networks in human brains

= flexible machine learning models that can (theoretically)
approximate any continuous function to a given
accuracy, i.e., they are universal approximators [2]

= able to handle large input and output dimensions and
big training data

= very commonly used in various supervised and
unsupervised learning applications

® In this lecture, we will focus on ANNSs for regression
problems

[1] Figure taken from: https://unsplash.com/photos/neurons-of-the-nervous-system-3d-illustration-of-nerve-cells-aNna7e9jDCE (Accessed on 22.06.2022)

[2] Hornik, Kurt; Tinchcombe, Maxwell; White, Halbert i1989i. Multilayer Feedforward Networks are Universal Approximators (PDF). Neural Networks. Vol. 2. Pergamon Press. pp. 359-366.
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Universal approximation theorem

¢® Assume:

= Asingle hidden layer of arbitrary size (number of
neurons)

= A non-polynomial continuous activation function, such
as the sigmoid function, in the hidden layer

= Linear activation in the output layer

® |t can be demonstrated that the neural network has the
capability to approximate any functionf (x): R™ — R with
arbitrary precision
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Nomenclature in a feed-forward ANNs

Weights
Input layer \ Hidden layers

Output layer

Neurons
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Activation function

® In both artificial and biological neural networks, a neuron does
not just output the bare input it receives

® Action potential firing in the human brain inspired activation

functions in ANNs [1] —_—
® There exist several possible activation functions, e.g., “13 ) f(iwivi+b)
= Hyperbolic tangent function )
= 05¢
f(x) = tanh(x) Y i
- Saturates quickly (For x = 5 almost constant, gradient 25t

vanishes) ; L
= Rectified Linear Unit (ReLU) o |
f(x) = max(0,x)
- Used in deep ANNSs

[1] Montesinos Lopez, O.A., Montesinos Lépez, A., Crossa, J. (2022). Fundamentals of Artificial Neural Networks and Deep Learning. In: Multivariate Statistical Machine Learning Methods for Genomic
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Presenter Notes
Presentation Notes
Neurons in artificial and biological neural networks have an activation function step.
Activation function is like the rate of action potential firing in the brain.
It transforms the weighted sum input before producing the final output.
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Output layer

Simple example - step1&2

Input layer

b,=10

Step 2:
Zy = W12 ‘X1 +W22 ‘XZ +W32 ‘X3 +b1 = 43
a, = ReLU(z,) = 43

Step 1:
Zl=W11‘X1+W21‘X2+W31‘X3+b1=1
| 12

a, = ReLU(zy) =1
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Output layer

Simple example - step3 &4

Input layer

b,=10

<

Step 3: Step 4: .
Z3 =Wy -aq +Wws-a, +b, =-50 _12 N2
L == —
-y 1(ytrue )
1=

y=2z3=0
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Matrix representation of neural networks

Input layer Hidden layer ® Taking the input — hidden layer section
b,
= Computation of the values to pass to the activation function
(z) follows:
z w w w 1
1 11 12 13
= X
(Zz) (Wi21 Wiz2 Wi23) xi + by

(22)

(Will X1+ Wi12 c Xp +Wyg3 - X3+ b1)
Wiz1 * X1 + Wipp - Xp + Wip3 - X3 + by
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Matrix representation of neural networks

Hidden layer Output layer
b,

¢ Taking the hidden layer — output section

= Computation of the values to pass to obtain the output (z;)
from the activation function outputs (a) follows:

a
Z3 = (Whll WhlZ) (az) + b2 = (WW11 *aAq + Wh12 * Ao + bz)
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Choosing activation functions for hidden layers

® Activation function choice is influenced by
the problem type [1].

® Sigmoid/Logistic and Tanh functions have Sigmoid function
bounded outputs (between 0 and 1 for \
Sigmoid/Logistic and between -1 and 1 for 1.0 e s SaaRs)
Tanh) which can lead to gradient Bl Actiiiation Furniction
saturation, contributing to the vanishing

gradient issue [2]. W Derivative ‘

® RelLU (Rectified Linear Unit) has become o
popular due to its non-linearity and S
avoidance of gradient saturation. However, R T e S B S S S A —_———
it has its own limitation, the "dying RelLU" i
problem.

[1] Baheti, P. (2021) Activation functions in Neural networks [12 Types & Use cases]. Available in: https://www.v7labs.com/blog/neural-networks-activation-functions (Accessed on 10.01.2024)

[2] https://www.engati.com/glossary/vanishing-gradient-problem
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Dying ReL.U

"Dying ReLU" is a common issue in deep neural networks
with the Rectified Linear Unit (ReLU) activation.

It occurs when RelLU neurons consistently output zero,
preventing them from learning.

This happens because of zero gradients during
backpropagation when inputs to ReLU are persistently
negative.

Variants like Leaky ReLU and PRelLU were introduced to
mitigate this problem by allowing learning for negative
inputs.
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Presenter Notes
Presentation Notes
"Dying ReLU" is a common issue with Rectified Linear Unit (ReLU) activation functions in neural networks, particularly in deep networks.
It occurs when ReLU neurons consistently output zero (remain "dead") for all inputs during training.
This problem arises because if the weighted sum of inputs to a neuron is consistently below zero, the ReLU activation outputs zero, resulting in zero gradients during backpropagation.
As a consequence, the weights of the neuron are not updated, and the neuron fails to learn and remains inactive.
Variants of ReLU, such as Leaky ReLU and Parametric ReLU (PReLU), were introduced to address the "dying ReLU" problem by allowing a small gradient or slope for inputs below zero, promoting the continued learning of neurons even for negative inputs.



Large variation of activation functions in deep learning

Sigmoid Tanh Gtep Function gﬂFtpms
’%/ /g%/ __G(E%_ Slg mOld
0 g
py = tane (x) 3T 4, e 3 = £n(1E)
i Log of Sigmoid
/8/ ‘/8(
. 0, R« o ) sl &=1) . wel * /
=, %30 = e Ii.n- =30 gy = Ln.
Suizh Sinc Leaky ReLL.0 Mish

—

Y* 1" o= 5_""1;[[") y= maxlotx, x) 7y » % (+wanin { s0FtpIus L)) — x
1+2

\ ’ Q @ &% ) f’ 1
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Presenter Notes
Presentation Notes
Including that new variants like Leaky ReLU, Parametric ReLU (PReLU), or Exponential Linear Unit (ELU) were developed to address some of the limitations of standard ReLU.
�

https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning
https://www.theaidream.com/post/an-overview-of-activation-functions-in-deep-learning

Choosing activation functions for output layers

® For Regression tasks: Linear activation function is used.
= Produces continuous output for numerical predictions.
® For Binary Classification: Sigmoid/Logistic activation function is employed.
= Squashes output between 0 and 1, ideal for binary decisions (e.g., yes/no).
® For Multiclass Classification: Softmax activation function is utilized.
= Assigns exclusive class probabilities, ensuring the sum equals 1.
® For Multilabel Classification: Sigmoid activation function is chosen.
= Allows activation of multiple classes independently for cases with multiple labels.

® RelLU (Rectified Linear Unit) should not be used in output layers because of its unbounded
nature, which can lead to instability during training and make it challenging to interpret the
model's predictions.
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Presenter Notes
Presentation Notes
For Regression tasks, the Linear activation function is used because it produces continuous output, allowing predictions for numerical values.
In Binary Classification, the Sigmoid/Logistic activation function is employed. It squashes the output between 0 and 1, making it suitable for binary decisions, like yes/no or true/false.
Multiclass Classification benefits from the Softmax activation function, which assigns exclusive class probabilities, ensuring that the sum of class probabilities equals 1.
Multilabel Classification relies on the Sigmoid activation function. It allows multiple classes to be activated independently, making it suitable for cases where multiple labels can be applied.
ReLU (Rectified Linear Unit) should not be used in output layers because of its unbounded nature, which can lead to instability during training and make it challenging to interpret the model's predictions.
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Which activation
Regression tasks?

A) Sigmoid/Logistic

typically used for

Join at: vevox.app ID: 165-026-438

function 1is

] 0%

B) Tanh

Input layer Hidden layers Output layer
A

] 0%

C) Linear

| 0%

D) Softmax

(IITTTTTT]

] 0%
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= 38 Join at: vevox.app ID: 165-026-438
Which activation function 1s typically used for
Regression tasks?

A) Sigmoid/Logistic
| 7.89%
B) Tanh
| 7.89%
e s
%
D) Softmax
| 2.63%
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Join at: vevox.app  ID: 165-026-438

What 1s the primary advantage of wusing the
Sigmoid/Logistic activation function 1n Binary

Classification?
A) It produces continuous output
& ] 0%
B) It squashes the output between 0 and 1
& ] 0%
C) It allows for multiple class activations
& ] 0%
D) It prevents the vanishing gradient problem
0%
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- 37 Join at: vevox.app ID: 165-026-438
What 1s the primary advantage of wusing the
Sigmoid/Logistic activation function 1n Binary
Classification?

_A) It produces continuous output
| 0%
B) It squashes the output between 0 and 1
97.3%
C) It allows for multiple class activations
| 2.7%
D) It prevents the vanishing gradient problem
| 0%
fus ;:T%ojﬁ fé}ji ErasrtT‘u“’E"pr:’opg‘:’r‘n‘rJn”e'R(;lji - ’-:} Ure MachineLearnAthon | Neural Networks 15 January 2026 24

(; 1632 g %/ g e i
A & e, Machine
TUDelft Omsw® '. LearnAthon



Join at: vevox.app  ID: 165-026-438

Why 1s the Softmax activation function preferred for
Multiclass Classification?

A) It produces continuous output

| 0%
B) It allows for multiple class activations
| 0%
C) It ensures that the sum of class probabilities equals 1
| 0%
D) It is suitable for binary decisions
0%
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= 35 Join at; vevox.app ID: 165-026-438
Why 1s the Softmax activation function preferred for
Multiclass Classification?

A) It produces continuous output
| 0%
BI It allows for multiile class activations ] 42 86
%
CI It ensures that the sum of class irobabilities eiuals 1 57 1;
: , , . %
D) It is suitable for binary decisions
| 0%
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Join at: vevox.app  ID: 165-026-438

When is the Sigmoid activation function typically used?

A) In Regression tasks

; | 0%
'B) In Binary Classification
& | 0%
C) In Multiclass Classification
; | 0%
D) In Multilabel Classification
| 0%
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a 34 Join at; vevox.app ID: 165-026-438
When is the Sigmoid activation function typically used?
A) In Regression tasks
| 0%
B) In Binary Classification 64.71
. . . OA)
CI In Multiclass Classification ] 11.76
DI In Multilabel Classification ] 23 53
%
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Lecture outline

® Neural network basics
® Neural network training
¢ Architecture and hyperparameters

® Applications of neural networks for regression
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Training

Training
outputs

|

» Predictions

Error

Training , Artificial neural
inputs network
Backpropagation <
algorithm
Compute error and
necessary derivatives
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How does a loss function look like?

® Cross-Entropy Loss (Log Loss)

® Mean Squared Error (MSE) or L2 loss

Type: Classification

Formula: £; = =Y, y; . log(model:(x;))
where M is number of classes, y is binary
indicator (0 or 1) if class label C is the
correct classification for observation i

Type: Regression

2
Formula: £ = % Zlivzl(yi — model(x;))

where N is the number of samples, y are

labels and x are the features
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Training ANNs with gradient descent algorithm

loss of ANN with (unknown) loss function

parameter Wli 4 \
L
7
8 w! W o oL
= - « :learning rate
— L' 11 11 Wi ( g rate)
loss of ANN with /
/
parameter w'q1 :
>
o
Wi1 Wi
ANN parameter (e.g., weight, bias)
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Presenter Notes
Presentation Notes
Objective: Minimize prediction error.
Iterative Process: Adjusting weights and biases to converge to optimal model.
Optimization Algorithms: Enhance training efficiency.



response (d)

The two passes in neural network training
desired

® The forward pass...
= passes data through the network layer by 4___4' TN
layer
AN output y of
= applies weights in each neuron, adds a bias, N\ *N~ neuron (j) %
and uses an activation function > ] > error

® The backward pass...
= adjusts network weights to minimize

prediction error
= computes the gradient of complex functions

through chain rule
= uses gradient descent to find good

parameter
15 January 2026

Forward function evaluation
Backward error and gradient evaluation

v
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Example of backpropagation
Example: Update w4

oL

W11

(« :learning rate)

r_
W11 = W11 — a3

oL _ oL 65} 023 aal aZ1
6W11 o 037 023 6a1 621 6W11
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What is the influence of the learning rate a?

0
N ,
3 Wi1 = Wi
>
o
Wii Wi
ANN parameter (e.g., weight, bias)
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The influence of the learning rate

Too low Just right Too high
A A A
%)
: ; :
- 3 -
> > >
ANN parameter (e.g., weight, bias) ANN parameter (e.g., weight, bias) ANN parameter (e.g., weight, bias)
A small learning rate requires The optimal learning rate swiftly Too large of a learning rate
many updates before reaching researches the minimum point causes drastic updates which
the minimum point lead to divergent behaviours (e.g.

overshooting)
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The influence of the learning rate in the convergence
plot

Very high learning rate

Loss ~_

H "
High learning rate >
>
Epoch
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Training deep networks using (mini) batches

¢ Batch Gradient Descent

= |n traditional gradient descent, we update model parameters using the entire dataset in each
iteration.

= Computationally expensive for large datasets. Can lead to slow convergence and high memory
usage.

® Mini-Batch Gradient Descent

= Divides the dataset into smaller, manageable subsets called "mini-batches.” Each mini-batch
contains a subset of the data, typically ranging from a few to a few hundred examples.

¢ Advantages of Mini-Batches
= Reduced memory requirements

= Faster convergence: Updates are more frequent, allowing for faster convergence.

= |Improved generalization: Stochasticity introduced by mini-batches can help escape local minima.
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Loss landscape

2N
(=
c
S
5

See animation online: https://losslandscape.com/explorer
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https://github.com/process-intelligence-research/Al-in-Bio-Chemical-Engineering-Lecture-Coding

Example 1/3

# Define a simple neural network model

class Net (nn.Module) :

def init (self) :

super (Net, self). 1init ()
10

10) # Input size: 1, Output size:
1) # Input size: 10, Output size: 1

self.fcl = nn.Linear (1,

self.fc?2 = nn.Linear (10,

def forward(self, x):

X = torch.relu(self.fcl (x))

X = self.fc2 (x)

return X
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Example 2/3 https://qgithub.com/process-intelligence-research/Al-in-Bio-Chemical-Engineering-Lecture-Coding

model = Net ()
# Define loss and optimizer
criterion = nn.MSELoss () # Mean Squared Error loss

optimizer = optim.Adam(model.parameters(), lr=0.01) # Adam optimizer
with learning rate 0.01
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Example 3/3 https://qgithub.com/process-intelligence-research/Al-in-Bio-Chemical-Engineering-Lecture-Coding

# Train the model
loss history = [] # To store the training loss at each epoch
for epoch in range (100) :
optimizer.zero grad() # Reset gradients to zero
outputs = model (X) # Perform a forward pass to get predictions

loss = criterion (outputs, y) # Calculate the mean squared error
loss

loss.backward() # Perform backpropagation to compute gradients
optimizer.step() # Update model parameters using the optimizer

loss history.append(loss.item()) # Append the current loss value
to the history list
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Presenter Notes
Presentation Notes
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
�# Generate synthetic data with a nonlinear relationship
torch.manual_seed(0)
X = torch.rand(100, 1)  # Input features
y = 0.5 * torch.sin(4 * np.pi * X) + 0.2 * torch.sin(12 * np.pi * X) + 0.1 * torch.randn(100, 1)
��# Define a simple neural network model
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(1, 50)  # Input size: 1, Output size: 10
        self.fc2 = nn.Linear(50, 1)  # Input size: 10, Output size: 1
�    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x
�model = Net()
�# Define loss and optimizer
criterion = nn.MSELoss()  # Mean Squared Error loss
optimizer = optim.Adam(model.parameters(), lr=0.01)  # Adam optimizer with learning rate 0.01
�# Train the model
loss_history = []  # To store the training loss at each epoch
for epoch in range(100):
    optimizer.zero_grad()  # Reset gradients to zero
    outputs = model(X)  # Perform a forward pass to get predictions
    loss = criterion(outputs, y)  # Calculate the mean squared error loss
    loss.backward()  # Perform backpropagation to compute gradients
    optimizer.step()  # Update model parameters using the optimizer
    loss_history.append(loss.item())  # Append the current loss value to the history list
��# Plot the training loss
plt.plot(range(100), loss_history)  # Use loss_history instead of loss.detach().numpy()
plt.xlabel('Epochs')
plt.ylabel('Mean Squared Error')
plt.title('Training Loss')
plt.show()
��# Make predictions
X_test = torch.tensor([[0.2], [0.5], [0.8]])
predictions = model(X_test)
�print("Predictions:")
for i, x in enumerate(X_test):
    print(f"Input: {x[0]}, Predicted Output: {predictions[i][0]}")
�
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You observe the following learning curve. What 1s
likely the reasons for the increase of the loss over
epochs?

'A) The learning rate is too low

& |0
'B) The learning rate is too high \ /
) 0%

C) The wrong loss function is used . Loss

& 0%

D) The number of epoch is too low

(0]
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You observe the following learning curve. What is likely
the reasons for the increase of the loss over epochs?

_A) The learning rate is too low

| 0%

B) The learning rate is too high
93.94%

C) The wrong loss function is used

| 6.06%
D) The number of epoch is too low
] 0%
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During the forward pass in ANN training, what 1is
calculated?
A) Gradients

| 0%
B) Activation Functions
& | 0%
C) Output Values
J 0%
D) Weights and Biases
| 0%
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During the forward pass in ANN training, what 1s
calculated?

A) Gradients
| 15.15%

B) Activation Functions

| 12.12%

C) Output Values
57.58%
D) Weights and Biases
| 15.15%
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In neural network training, why 1s gradient descent
often preferred over second-order optimization
methods like Newton's method?

A) Gradient descent is faster and requires fewer iterations.

] 0%

B) Second-order derivatives do not exist for deep networks because of the RelLU activation function
[ | 0%
C) Gradient descent is less computationally intensive.

| 0%
D) Second-order methods can be computationally expensive due to Hessian calculations

[and storage, making them less practical for large-scale neural networks. ]
0%
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In neural network training, why 1s gradient descent
often preferred over second-order optimization
methods like Newton's method?

A) Gradient descent is faster and requires fewer iterations.

9.09%

B) Second-order derivatives do not exist for deep networks because of the ReLU activation function
* | 30.3%
C) Gradient descent is less computationally intensive.
_ | 18.18%

D) Second-order methods can be computationally expensive due to Hessian calculations and
storage, making them less practical for large-scale neural networks.

T 42.42%
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Lecture outline

® Neural network basics
® Neural network training
¢ Architecture and hyperparameters

® Applications of neural networks for regression
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How to identify a suitable ANN architecture?

Shallow artificial neural network
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Deep artificial neural network
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Wide or deep?

® Nomenclature
= Width W: Number of neurons in hidden layer
= Depth D: Number of hidden layers
= “deep learning”: depth > 2
¢ Complexity
= Fully connected network: # parameters ~0(W?2 - D)
® Generalization
= Deep can learn intermediate features and may generalize better

¢ Depth and width are hyperparameters = optimize them!
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Underfitting and overfitting

Output
Output
Output

> >

Input Input Input

Underfitted Good fit/ Robust Overfitted
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Figure: https://miro.medium.com/max/1125/1* 7OPio'au8hkiPUiHoGK w.png
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How to identify overfitting?

Underfitting Overfitting
L < :; >
4 !
- validation data
7 ‘:
o] |
- |
‘ training data
' Good fit
j >
Model complexity
(e.g., number of neurons, hidden layers)
W (L, \ERZs, Co-funded by the
versitat {3&/\/‘\/(00(. ;‘\\\ Ll; Erasmus+ programmgof
2 LIl 2 @ t“m“"nea":,”m” Microlecture MachineLearnAthon | Neural Networks 15 January 2026 | 55
4)%:‘?:@0 o, P oy achine

SN\ LearnAthon



Splitting the dataset into training, validation, and test

® The original data set is randomly divided into training, test
and validation set according to a predefined ratio,

" e.g., 710%:15%:15%
® The training is done using a training set

® The model complexity (i.e., #layers and #neurons) are Train
chosen using an independent validation set

® The performance of data-driven models is evaluated on

A\ 4

an independent test set : :
Machine learning
algorithm
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k

-fold cross-validation

Cross-validation is a valuable alternative when dealing
with limited training data.

Instead of the traditional training/test/validation spilit,
cross-validation randomly divides the dataset into k
subsets.

The model is tested k times, each time using a different
subset for validation.

Parameter scores from each fold are averaged to assess
overall performance.

Cross-validation ensures thorough testing across the
entire dataset, enhancing model evaluation.

While cross-validation provides robust evaluations, it can
be computationally expensive due to multiple model
training and evaluation iterations.
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Feeling like learning more...

® Test and explore the different effects the settings of a neural network can have in the output

= Visit playground.tensorflow.org
= Play with the settings and reflect on your findings
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https://playground.tensorflow.org/
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If your neural network has overfit the training set in
modelling a product quality based on historical data,

what does 1t mean?

A) It makes accurate predictions for examples in the training set and generalizes well on
new, previously unseen examples.

[ | 0%
B) It does not make accurate predictions for examples in the training set but generalize well on new,
previously unseen examples.

J 0%

C) It makes accurate predictions for examples in the training set but does not generalize well on new,
previously unseen examples
| 0%

D) It does not make accurate predictions for examples in the training set and does not
generalize well on new, previously unseen examples.

0%
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If your neural network has overfit the training set in
modelling a product quality based on historical data,
what does 1t mean?

A) It makes accurate predictions for examples in the training set and generalizes well on
new, previously unseen examples.

[ | 0%
B) It does not make accurate predictions for examples in the training set but
&eneralize well on new, previously unseen examples.

| 3.03%
C) It makes accurate predictions for examples in the training set but does not

generalize well on new, previously unseen examples.

T 67.88%

D) It does not make accurate predictions for examples in the training set and does
not generalize well on new, previously unseen examples.
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Surrogate models — a data-driven approach

Surrogate models serve the purpose of simplifying the
representation of a system's behavior [1].

They enable efficient analysis of a system's key factors with
minimal computational resources.

Various techniques can be employed to derive surrogate
models, including:

= Linear or nonlinear regression

= Projection onto subdomains using methods like POD (Proper
Orthogonal Decomposition), SVD (Singular Value
Decomposition), and DMD (Dynamic Mode Decomposition).

= Machine learning algorithms

. ’\‘- 7
Design _eT
parameters - e
< -
-
X 1 + Sensitivity

analysis

X 2 « Optimization
. * Risk analysis
X N
.~/

~ =t Expensive, since it involves many
= = simulation runs

Cheap, since training and employing
a surrogate model is not expensive

(', f(")
(=* f(ﬂ” ) Training

Surrogate
model

Output

in

Y2

YN

[1] Gargalo, C., et al., 2021. Towards the Development of Digital Twins for the Bio-manufacturing Industry. In: Herwig, C., Pértner, R, and J., Mdller. 2021. https://doi.org/10.1007/10_2020 142

[2] Guo, S. An introduction to Surrogate Modelin
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Part I: Fundamentals. Available in: https://towardsdatascience.com/an-introduction-to-surrogate-modeling-part-i-fundamentals-84697ce4d241
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Surrogate models — example in ChemE

® Optimization of FTS using NNs [3]

= Fernandes et al. used a NN in substitution to the complex reaction mechanism to estimate
the product distribution and optimize the production of gasoline and diesel.

Total CO conversion Goal:
Pressure Replace complex
, kinetic model for FTS
Light gas
7] 7] 7] o
c c c Training:
H,:CO ratio o o o LPG 150k epochs
= = = 75 % data splitting
c c c Gasoline (15: 5 experimental
o Te) Te)
~ o a values)
Diesel
S Assessment:
ebz-elce( ) Absolute and relative
velocity (¢ Olefins error (OPE, MPE)
(02+, 04+, 09+) ’

[1] Palmer, K. and M. Realff. 2002. Metamodeling approach to optimization: Model generation. Trans IChemE. 80(7): 760-772.
[2] Mujtaba, I., Aziz, N. and M. Hussain. 2006. Neural network based modelling and control in Batch reactor. Chemical Engineering Research and Design. 84(A8): 635-644
[3] Fernandes, F. 2006. Optimization of Fischer-Tropsch Sinthesis using Neural Networks. Chemical Engineering and Technology. 29(4): 449-453. Figure based on publication.
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Presenter Notes
Presentation Notes
The script of a replication of the paper;s approach is in the OneDrive (FTS_Fernandes_FFNN.ipynb) – my approach can decently predict the all products but the O9+ fraction.  

Inputs: Operating conditions
Outputs: Product distribution

Details of the training and approach in the textbox. 

Stress that the FTS follows a complex kinetic mechanism due to polymerization reactions and the heterogeneities of the catalyst structure and spatial ones (inside the reactor). 


Surrogate models — example in BioChemE

® Prediction of microalgal lutein photo-production under dynamic conditions [1]

= Authors study how two robust ANN topologies (one vs. two hidden layers) can compute the
rate of change in a fed-batch process (i.e., growth, accumulation, and production rates).

Elbow rule for 2*h
topology. Taken from [1]

600 50

F
‘T'
ANN

d/dt(M,)

Hyperparameter optimization
performed using the ‘elbow rule’

[1] del Rio-Chanona, E., Fiorelli, F. Zhang, D., Nuur, A., Jing, K and N. Shah. 2017. An efficient model construction strategy to simulate microalgal lutein photo-production dynamic process.
Biotechnology and Bioengineering 114(11): 2518-2527. DOI: 10.1002/bit.26373
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Presenter Notes
Presentation Notes
Authors simulated a fedbatch microalgal production of lutein (a valuable bioproduct with great potential fro the food, cosmetics, and pharma industries) – synthesized by Desmodesmus sp. In a photobioreactor

They evaluated two different approaches (1 vs 2 hidden layers)
The inputs are the biomass concentration, nitrate concentration, amount of product (lutein), concentration of nitrate in the inflow, light intensity. 
Outputs: growth rate, nitrate accumulation (uptake is hidden here),  production rate. 
The hyperparameter optimization was done using the elbow rule to finetune epochs and nodes in the hidden layer. (I found it nice to introduce this topic)


https://doi.org/10.1002/bit.26373
https://doi.org/10.1002/bit.26373
https://doi.org/10.1002/bit.26373
https://doi.org/10.1002/bit.26373
https://doi.org/10.1002/bit.26373
https://doi.org/10.1002/bit.26373

Surrogate models — example in BioChemE

® Prediction of microalgal lutein photo-production under dynamic conditions [1]
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Figure 1. ANN inputs and outputs for the framework evaluated in [1] 0 20 40 60 80 100 120
(© Time

Figure 2. Comparison of prediction results for topologies evaluated after
hyperparameter optimization, and experimental data. Taken from [1]

[1] del Rio-Chanona, E., Fiorelli, F. Zhang, D., Nuur, A., Jing, K and N. Shah. 2017. An efficient model construction strategy to simulate microalgal lutein photo-production dynamic process.
Biotechnology and Bioengineering 114(11): 2518-2527. DOI: 10.1002/bit.26373
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Presenter Notes
Presentation Notes
As an outcome of the surrogate, authors can describe the progress of a fed-batch fermentation stating the initial conditions of the state variables and from there compute the concentration of the biomass, lutein and nitrate. The figure shows the comparison of the fine-tuned 1HL and 2HL networks w.r.t. experimental values. 
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https://doi.org/10.1002/bit.26373

Learning goals of this lecture

After successfully completing this lecture, you are able to....

® Explain the fundamentals on artificial neural networks along with some of their limitations
® Explain the fundamentals on training with backpropagation

® Analyse a machine learning result in the context of overfitting

® Develop and implement neural networks in the context of basic (Bio)Chemical Engineering
applications (i.e., regression and classification)
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Assignment 2: Deep learning for regression

® Case study 1:

= |llustrative 1-D case example

= Analyse influence of model complexity

= Assess the extrapolation capabilities of the model
® Case study 2:

= Surrogate model of process simulations

= Implement a deep NN for predicting process variables
® Case study 3 (optional):

= Molecular property prediction example using QSPR

= Analyse the influence of molecular descriptors for predicting boiling temperature
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Thank you very much for your attention!
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