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Learning outcomes of today
After successfully completing this lecture, you will be able to…
• Explain how image data is “seen” by machines
• Identify challenges in applying computer vision to real world applications
• Explain the concept of feature in computer vision
• Explain standard Convolutional Neural Network (CNN) architectures
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Agenda
• What is computer vision?
• What do machines see?
• Important concepts in computer vision
 Filter
 Padding
 Stride
 Pooling

• Elements in deep learning computer vision algorithms
• How does a modern computer vision model look like?
• Outlook on today’s assignment
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Goal of computer vision

“Computer vision is the process of using computers to 
extract from images useful information about the 

physical world, including meaningful descriptions of physical 
objects.”1

[1] Encyclopedia of Computer Science, https://dl.acm.org/doi/10.5555/1074100.1074274
[2] Figure: https://unsplash.com/photos/fRVPzBYcd5A
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How do humans see?
• Vision:
 Light enters through the cornea and 

focused by the lens onto the retina
 In the retina the light is converted into 

electrical signals
 These signals travel to the brain for 

interpretation
• Information from both eyes enables a 3D 

perception of the surroundings
• The resolution of the human eye is ~ 576 

megapixels
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https://www.vedantu.com/question-answer/draw-a-diagram-of-the-human-eye-as-seen-in-a-class-10-biology-cbse-6080f647dfee7e00e205f722

Presenter Notes
Presentation Notes
The human eye is a complex sensory organ responsible for vision.
Light enters the eye through the cornea, passes through the pupil (controlled by the iris), and is focused by the lens onto the retina at the back of the eye.
The retina contains photoreceptor cells called rods and cones, which convert light into electrical signals that can be processed by the brain.
These electrical signals are transmitted via the optic nerve to the brain's visual cortex, where they are interpreted as images.
The brain integrates information from both eyes to create a three-dimensional representation of the surrounding environment.

the resolution of the human eye is 576 megapixels



What is the difference?

Figure of Ape: https://commons.wikimedia.org/wiki/File:Vespa_truck.jpg
Figure of Albert Einstein: https://commons.wikimedia.org/wiki/File:Albert_Einstein_Head.jpg
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How can a computer differentiate an 
image of “car” from a “human”?
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Agenda
• What is computer vision?
• What do machines see?
• Important concepts in computer vision
 Filter
 Padding
 Stride
 Pooling

• Elements in deep learning computer vision algorithms
• How does a modern computer vision model look like?
• Outlook on today’s assignment
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Digital images are composed of pixels
• Pixel basics
 Each pixel is the smallest unit of a digital image
 Pixels are organized in a grid to compose the 

image
• Image resolution
 Resolution refers to the pixel count in an image
 Higher resolution means more pixels and more 

detail
• Image formats
 Common formats include JPEG and PNG
 These use compression to reduce file size
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Picture courtesy: "Bald eagle with fish" by U. S. Fish and Wildlife Service - Northeast Region is marked with Public Domain Mark 1.0.

One Pixel
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Color spaces to represent images
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• RGB images consist of three matrices laid over each other, with values between 0-255
• Alternative, Gray scale images only have a single matrix with values between 0-1

13 March 2024



Are the pixel values of these two images similar?
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Figure of Ape: https://commons.wikimedia.org/wiki/File:Vespa_truck.jpg
Figure of BMW Isetta: https://commons.wikimedia.org/wiki/File:BMW_Isetta_(2015-08-29_3124_b_Sp).JPG
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Challenges for representing images as matrices
• Processing images as matrices is 

challenging using traditional computing
• Some of the challenges include…
 Viewpoint
 Illumination
 Intraclass variability
 Deformation
 Background clutter
 and many more…
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Challenges: Viewpoint
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completely 
different 

Depending on the viewpoint, the same object has a completely different matrix



Challenges: Illumination
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https://www.freepik.com/free-photo/cute-cat-darkness_9932116.htm#fromView=search&page=1&position=6&uuid=e5b09c2b-079d-4815-9e91-6a449816921c



Challenges: Intraclass variability
• Oftentimes, we group things together that 

not always look completely alike
• We call this intraclass variability
• Computers need to know that certain 

depictions belong to the same class
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Challenges: Deformation
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Cimpeanu, R., & Papageorgiou, D. T. (2018). Three-dimensional high speed drop impact onto solid surfaces at arbitrary angles. International Journal of Multiphase Flow, 107, 192-207.

17



Challenges: Background clutter
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https://www.freepik.com/free-photo/closeup-shot-cat-green-leaves_17419966.htm#fromView=search&page=1&position=0&uuid=e231445c-0165-4d85-91a7-b86ed34e44af



Agenda
• What is computer vision?
• What do machines see?
• Important concepts in computer vision
 Filter
 Padding
 Stride
 Pooling

• Elements in deep learning computer vision algorithms
• How does a modern computer vision model look like?
• Outlook on today’s assignment
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How can a computer differentiate an 
image of “car” from a “human”?

20Microlecture MachineLearnAthon |  Computer Vision 13 March 2024



Features of humans and cars

https://towardsdatascience.com/building-a-similar-images-finder-without-any-training-f69c0db900b5 
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Low-level
features

High-level
features
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We need to abstract relevant features from images

[1] Bertasius, G., et al (2015) “High-for-Low and Low-for-High: Efficient Boundary Detection from Deep Object Features and its Applications to High-Level Vision”

• To overcome these challenges, we need to represent the images robustly
• We need to find features that characterize objects in images
• But how can we find these features?

22Microlecture MachineLearnAthon |  Computer Vision 13 March 2024

Increasing level of abstraction, focusing on lower-level features

low-level features:
edges, dark spots

mid-level features:
eyes, ears, noses

high-level features:
facial structure



Introduction to filters
• Filters are mathematical operators applied 

to images to extract information and/or 
change appearance

• The result of a filter is referred to as a 
feature map

• In a convolution operation, a filter is 
slided over an image to obtain feature 
maps

• Convolution, kernel and filters are often 
used as synonyms

[1] Intuitively Understanding Convolutions for Deep Learning (Intuitively Understanding Convolutions for Deep Learning | by Irhum Shafkat | Towards Data Science)
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Filters transform images to new 
images (aka feature maps)
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A simple example “Image”
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Actual image: 6x6

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

Matrix representation: 6x6



Conceptualize filters: What will happen if we apply the 
average filter?
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1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Some image: 6x6

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 3x3

∗ =



Conceptualize filters: What will happen if we apply the 
average filter?
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1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Some image: 6x6

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 3x3

1

∗ =



1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

Conceptualize filters: What will happen if we apply the 
average filter?
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1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Some image: 6x6

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 3x3

1 0.88

∗ =



1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

Conceptualize filters: What will happen if we apply the 
average filter?
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1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Some image: 6x6

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 3x3

1 0.88 0.77

∗ =



Conceptualize filters: What will happen if we apply the 
average filter?
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1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Some image: 6x6

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 3x3

1 0.88 0.77 0.77

1 0.77 0.55 0.55

1 0.77 0.55 0.55

1 0.88 0.77 0.77

∗ =

What happened to the image? – It shrank

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1



Code example
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https://github.com/process-intelligence-research/AI-in-Bio-Chemical-Engineering-Lecture-Coding 
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How do express a filter mathematically?
• The filtering can be expressed as a sparse matrix multiplication:

 𝐶𝐶 𝑥𝑥,𝑦𝑦 = ∑
𝑖𝑖=−ℎ−12

ℎ−1
2 ∑

𝑗𝑗=−𝑤𝑤−12

𝑤𝑤−1
2 𝐼𝐼 𝑥𝑥 + 𝑖𝑖,𝑦𝑦 + 𝑗𝑗 ∗ 𝐾𝐾(𝑖𝑖 + ℎ−1

2
, 𝑗𝑗 + 𝑤𝑤−1

2
)

 Where 𝐼𝐼 𝑥𝑥 + 𝑖𝑖,𝑦𝑦 + 𝑗𝑗 is the pixel value at position 𝑥𝑥 + 𝑖𝑖,𝑦𝑦 + 𝑗𝑗 , 

 𝐾𝐾(𝑖𝑖 + ℎ−1
2

, 𝑗𝑗 + 𝑤𝑤−1
2

) is the value of the kernel at 𝑖𝑖 + ℎ−1
2

, 𝑗𝑗 + 𝑤𝑤−1
2

,

 And h, w are the kernel height and width respectively 
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Image example: Effect of smoothing on noisy image
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Join the Vevox session

Go to vevox.app

Enter the session ID: 199-929-003

Or scan the QR code
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Select the resultant once the following filter is applied

##/## Question slideJoin at: vevox.app ID: 199-929-003

A
0%

B
0%

C
0%

D
0%
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Select the resultant once the following filter is applied

##/## Preparing Join at: vevox.app ID: 199-929-003

A 81.48
%

B
0%

C
7.41%

D
11.11%

13 March 
2024Microlecture MachineLearnAthon |  Computer Vision 35

✓



We can also apply other filters 
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1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

1/3 0 -1/3

1/3 0 -1/3

1/3 0 -1/3

∗ =

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

What happens if we apply it?

Presenter Notes
Presentation Notes
We apply the filter (3x3 matrix) on a image (6x6). The filter is designed to highlight VERTICAL edges; the left part and the right part of the filter are added. If the pixel values are equal (within a homogenous region of the image), this will make the sum zero. At edges, the pixel values on the left and right are different, this will make the sum non-zero.



We can also apply multiple kernels to get different 
feature maps!
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∗ =1 0 -1
1 0 -1
1 0 -1

Resulting images are inverted for visibility!



We can also apply multiple kernels to get different 
feature maps!
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∗ =

Resulting images are inverted for visibility!

-1 -1 -1
0 0 0
1 1 1



1 1 1 1 1 1

1 1 0.88 0.77 0.77 1

1 1 0.77 0.55 0.55 1

1 1 0.77 0.55 0.55 1

1 1 0.88 0.77 0.77 1

1 1 1 1 1 1

-1 0 1
-1 0 1
-1 0 1

1 1 1
0 0 -1
0 0 1

A filter operating on multiple channels
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input images
[height, width, channels] = [8,8,3]

∗ -1 -1 -1
0 0 0
1 1 1

applied filter
[height, width, channels] = [3,3,1]

=

resulting feature map
[height, width, channels] = [6,6,1]



1 0.5 0 1 0 1

1 1 0.88 0.77 0.77 1

1 1 0.77 0.55 0.55 1

1 1 0.77 0.55 0.55 1

1 1 0.88 0.77 0.77 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 0.88 0.77 0.77 1

1 1 0.77 0.55 0.55 1

1 1 0.77 0.55 0.55 1

1 1 0.88 0.77 0.77 1

1 1 1 1 1 1

-1 -1 -1
-1 0 0
-1 0 1

-1 -1 -1
0 0 0
0 0 1

Multiple filters operating on multiple channels
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input images
[height, width, channels] = [8,8,3]

∗ -1 -1 -1
0 0 0
1 1 1

applied filters
[height, width, channels] = [3,3,2]

=

resulting feature map
[height, width, channels] = [6,6,2]

1 0 -1
-1 0 -1
-1 0 -1

1 1 1
0 0 -1
0 0 -1

1 0 -1
1 0 -1
1 0 -1

∗



Agenda
• What is computer vision?
• What do machines see?
• Important concepts in computer vision
 Filter
 Padding
 Stride
 Pooling

• Elements in deep learning computer vision algorithms
• How does a modern computer vision model look like?
• Outlook on today’s assignment
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How can we avoid making our image smaller? Padding
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∗ =

Padding

6*6 image

6*6 image



How can we avoid making our image smaller? Padding
• We can avoid shrinking our images by 

artificially extending them

• There are several common padding 
techniques:
• Mirror padding
• Zero padding
• Constant padding
• Replicate padding
• Circular padding
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How can we avoid making our image smaller? Padding
• We can avoid shrinking our images by 

artificially extending them

• There are several common padding 
techniques:
• Mirror padding
• Zero padding
• Constant padding
• Replicate padding
• Circular padding
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How can we avoid making our image smaller? Padding
• We can avoid shrinking our images by 

artificially extending them

• There are several common padding 
techniques:
• Mirror padding
• Zero padding
• Constant padding
• Replicate padding
• Circular padding
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How can we avoid making our image smaller? Padding
• We can avoid shrinking our images by 

artificially extending them

• There are several common padding 
techniques:
• Mirror padding
• Zero padding
• Replicate padding
• Constant padding
• Circular padding
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How can we avoid making our image smaller? Padding
• We can avoid shrinking our images by 

artificially extending them

• There are several common padding 
techniques:
• Mirror padding
• Zero padding
• Replicate padding
• Constant padding
• Circular padding
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How can we avoid making our image smaller? Padding
• We can avoid shrinking our images by 

artificially extending them

• There are several common padding 
techniques:
• Mirror padding
• Zero padding
• Replicate padding
• Constant padding
• Circular padding
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Agenda
• What is computer vision?
• What do machines see?
• Important concepts in computer vision
 Filter
 Padding
 Stride
 Pooling

• Elements in deep learning computer vision algorithms
• How does a modern computer vision model look like?
• Outlook on today’s assignment
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Do need to apply our kernel to every pixel? No
• Idea: We only apply the kernel every n-th time, where n is our stride
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1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

Stride = 1 Stride = 2



How can we reduce our image size quicker? Stride
• Idea: We only apply the kernel every n-th time, where n is our stride
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1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

Stride = 1 Stride = 2

Stride = 1 Stride = 2



How can we reduce our image size quicker? Stride
• Idea: We only apply the kernel every n-th time, where n is our stride
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1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

Stride = 1 Stride = 2



How can we reduce our image size quicker? Stride
• Idea: We only apply the kernel every n-th time, where n is our stride
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1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

Stride = 1 Stride = 2



What does stride look like when applied?

54Microlecture MachineLearnAthon |  Computer Vision 13 March 2024

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 1 1 1

1 1 1 1 1 1

¼ ¼

¼ ¼ 

Some image: 6x6

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 2x2

1 1 1 1 1

1 1 ¾ ½ ¾ 

1 1 ½  0 ½ 

1 1 ¾ ½ ¾ 

1 1 1 1 1

∗ =
1 1 1

1 ½ ½ 

1 1 1

Stride = 2

Stride = 1



How can we calculate the output dimension of feature 
maps?

[2] https://en.wikipedia.org/wiki/Floor_and_ceiling_functions

• The output size (height and width) of the feature map is given by

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝐼𝐼𝑝𝑝 − 𝐹𝐹 + 2𝑃𝑃

𝑆𝑆
+ 1

• where…
 𝐼𝐼𝑃𝑃:Input dimension (height, width of image)
 𝐹𝐹: Filter size (height and width of kernel)
 𝑃𝑃 ∶ Padding (Padding is usually applied symmetrically)
 𝑆𝑆 : Stride
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Bracket indicates the floor function (or 
greatest integer function) that
returns the greatest integer less than the 
function argument.[2]

We expect you to know this 
formula for the exam (by heart)!

Presenter Notes
Presentation Notes
The formula can be understood with the following rational: For a larger filter size, more pixels in the left and right will be removed. E.g. for a 5 pixel image with a 3 pixel wide kernel, we can only apply the kernel twice. The padding naturally increases our output dimension. If we apply a stride > 1, we lose output dimensions as well.

In mathematics, the floor function (or greatest integer function) is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the smallest integer greater than or equal to x, denoted ⌈x⌉ or ceil(x).

https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions


Example calculation
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1. Convolutions:
• 𝐼𝐼𝑝𝑝 = 224
• F = 3
• S = 1
• P = 1

• Number of filters = 128

Output size = [height, width, number of channels] = 224x224x128

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =
𝐼𝐼𝑝𝑝 − 𝐹𝐹 + 2𝑃𝑃

𝑆𝑆 + 1 =
224 − 3 + 2

1 + 1 = 224

ChannelsHeight and width
of output feature maps

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐼𝐼𝑝𝑝 − 𝐹𝐹 + 2𝑃𝑃

𝑆𝑆 + 1 =
224 − 3 + 2

1 + 1 = 224



Agenda
• What is computer vision?
• What do machines see?
• Important concepts in computer vision
 Filter
 Padding
 Stride
 Pooling

• Elements in deep learning computer vision algorithms
• How does a modern computer vision model look like?
• Outlook on today’s assignment
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Motivation behind pooling
• There are can be many important features 

in a single image
• If we apply all these filters, we will end up 

with many feature maps
• So how can we reduce the dimensionality 

of our feature maps?
• Goal of pooling:
 Keep important information
 Reduce dimensionality

Image taken from freepik.com (worker-surrounded-with-glass-beakers-filled-with-colorful-liquid)
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How can we summarize found feature maps? Pooling
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2 3 7 4

6 6 9 8

3 4 8 3

7 8 3 6

¼ ¼ 

¼ ¼ 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 2x2

∗ =

Average pooling 
with kernel size 2 

and stride 2



How can we summarize found feature maps? Pooling
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2 3 7 4

6 6 9 8

3 4 8 3

7 8 3 6

4.25 7

5.6 5

¼ ¼ 

¼ ¼ 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 2x2

∗ =

Average pooling 
with kernel size 2 

and stride 2



How can we summarize found feature maps? Pooling
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2 3 7 4

6 6 9 8

3 4 8 3

7 8 3 6
max(a, b, c, d)

=

2D-max pooling 
with kernel size 2 

and stride 2

a b 

c d 



How can we summarize found feature maps? Pooling

62Microlecture MachineLearnAthon |  Computer Vision 13 March 2024

2 3 7 4

6 6 9 8

3 4 8 3

7 8 3 6

6 9

7 8

max(a, b, c, d)

=

2D-max pooling 
with kernel size 2 

and stride 2

a b 

c d 



Example of applied max-pooling
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94
2

1094

547

47
1

2D-max pooling 
with kernel size 2 

and stride 2



Agenda
• What is computer vision?
• What do machines see?
• Important concepts in computer vision
 Filter
 Padding
 Stride
 Pooling

• Elements in deep learning computer vision algorithms
• How does a modern computer vision model look like?
• Outlook on today’s assignment
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Image classification tasks
• In image classification, we aim to get 

probabilities for categories of image
• In our example, we have a dataset with two 

classes, “human” and “car”
• More general, for a model 𝑚𝑚 and image 𝐼𝐼, 

we aim to get a prediction vector 𝑝𝑝

 𝑝𝑝 = 𝑚𝑚 𝐼𝐼 =

𝑝𝑝1(𝐼𝐼)
𝑝𝑝2(𝐼𝐼)

…
𝑝𝑝𝑐𝑐(𝐼𝐼)

 containing a probability 𝑝𝑝𝑖𝑖 for each class 
𝑐𝑐 of the dataset 
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70% car
30% human 

Model 𝑚𝑚



Learning filters (aka convolutions) in convolutional 
neural networks
• For image classification, we train the 

convolutional neural network models 
supervised

• We use kernels with learnable weight 
matrices to extract features

• The model is trained by minimizing the 
error between prediction and ground truth 
(see slide 33 in Lecture 2)

• Since the kernels are learned, we do not 
need to manually define them
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70% car

Feature map

a b c
d e f
g h i

∗

backprogate
error



Modern computer vision models, i.e., convolutional 
neural networks (CNNs), consist of…• …convolutions, used to extract features (edges, textures and patterns)
• …pooling, used to reduce dimensionality by downsampling
• …activation functions, used to introduce non-linearity
• …sampling techniques such as stride and padding

We do not need to manually define those filters. Instead, we let convolutional neural 
networks learn them!
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How does this look like in a convolutional neural 
network?
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Learned filters

Convolution Nonlinearity Pooling

To the next 
layer

Presenter Notes
Presentation Notes
…convolutions, used to extract features (edges, textures and patterns)
…pooling, used to reduce dimensionality by downsampling
…activation functions, used to introduce non-linearity
…sampling techniques such as stride and padding

 We do not need to manually define those filters. Instead, we let convolutional neural networks learn them!





How does this look like in a convolutional neural 
network?
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Learned filters

Convolution Nonlinearity Pooling

To the next 
layer



How does this look like in a convolutional neural 
network?
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Learned filters

Convolution Nonlinearity Pooling

To the next 
layer



How does this look like in a convolutional neural 
network?
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Learned filters

Convolution Nonlinearity Pooling

To the next 
layer



How does this look like in a convolutional neural 
network?
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Learned filters

Convolution Nonlinearity Pooling

To the next 
layer



What do we do with the found feature maps?
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Repeated N times
What do we do with these 

feature maps?

feature maps

…



We can flatten them into a vector and feed them to an 
feed forward neural networks!
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feature maps

torch.flatten()

Feed-forward 
ANN

Prediction
“Flowsheet”

input

CNNs

The MLP can be a regression model or a classification model



Agenda
• What is computer vision?
• What do machines see?
• Important concepts in computer vision
 Filter
 Padding
 Stride
 Pooling

• Elements in deep learning computer vision algorithms
• How does a modern computer vision model look like?
• Outlook on today’s assignment
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Let’s look at an example: VGG161

• VGG stands for Visual Geometry Group, it
is a deep Convolutional Neural Net.

• The CNN is 16 layers ‘deep’ hence called
VGG16.

• It is primarily used for object detection and
classification algorithm.

Image courtesy: https://learnopencv.com/tag/vgg16/
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https://learnopencv.com/tag/vgg16/
https://learnopencv.com/tag/vgg16/
https://learnopencv.com/tag/vgg16/
https://learnopencv.com/tag/vgg16/
https://learnopencv.com/tag/vgg16/
https://learnopencv.com/tag/vgg16/
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This is how it looks in a modern architecture – VGG161
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Input image [224x224x3]



Exercise: What are the intermediate feature map 
dimensions?
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64 filters, kernel = [3,3], padding = 1

resulting feature map size = [224,224,64]

input feature map size       = [224, 224, 3]

Output Dimension = 𝐼𝐼𝑝𝑝−𝐹𝐹+2𝑃𝑃
𝑆𝑆

+ 1 = 224−3+2∗1
1

+ 1 = 224

Resulting feature map size = [224,224,64]



Exercise: What are the intermediate feature map 
dimensions?
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64 filters, kernel = [3,3], padding = 1

Resulting feature map size = [224,224,64]

input feature map size       = [224,224,64]

Output Dimension = 𝐼𝐼𝑝𝑝−𝐹𝐹+2𝑃𝑃
𝑆𝑆

+ 1 = 224−3+2∗1
1

+ 1 = 224



Exercise: What are the intermediate feature map 
dimensions?
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Max-pool size = [2,2], stride = [2,2]

input feature map size       = [224,224,64]

Resulting feature map size = [112, 112, 64]

Output Dimension = 𝐼𝐼𝑝𝑝−𝐹𝐹+2𝑃𝑃
𝑆𝑆

+ 1 = 224−2+2∗0
2

+ 1 = 112



Exercise: What are the intermediate feature map 
dimensions?
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128 filters, kernel = [3,3], padding = 1

input feature map size       = [112,112,64]

Resulting feature map size = [112, 112, 128]

Output Dimension = 𝐼𝐼𝑝𝑝−𝐹𝐹+2𝑃𝑃
𝑆𝑆

+ 1 = 112−3+2∗1
1

+ 1 = 112



Exercise: What are the intermediate feature map 
dimensions?
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input feature map size       = [112,112,128]

Max-pool size = [2,2], stride = [2,2]

Resulting feature map size = [56, 56, 128]

Output Dimension = 𝐼𝐼𝑝𝑝−𝐹𝐹+2𝑃𝑃
𝑆𝑆

+ 1 = 112−2+2∗0
1

+ 1 = 56



Exercise: What are the intermediate feature map 
dimensions?
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input feature map size       = [112,112,128]

256 filters, kernel = [3,3], padding = 1

Resulting feature map size = [56, 56, 256]

Output Dimension = 𝐼𝐼𝑝𝑝−𝐹𝐹+2𝑃𝑃
𝑆𝑆

+ 1 = 112−3+2∗1
1

+ 1 = 56



…and so on, until we reach the final dimensionality
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Input [224,224,3] Feature map size [224,224,64]

Feature map size [112,112,128]
Feature map size [56,56,256]

Feature map size [28,28,512]
Feature map size [14,14,512]

Feature map size [7,7,512]



VGG16: Architecture
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VGG16 already exists within PyTorch, so we 
import by a function call.



Agenda
• What is computer vision?
• What do machines see?
• Important concepts in computer vision
 Filter
 Padding
 Stride
 Pooling

• Elements in deep learning computer vision algorithms
• How does a modern computer vision model look like?
• Outlook on today’s assignment
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Outlook: Assignment 5 on computer vision
• In Assignment 5, you will…
• Implement computer vision operations by 

yourself
• Test different architectures for classification
• Try out VGG-16!
• Work with a real dataset 
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Thank you very much for your attention!
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