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Learning outcomes of today

After successfully completing this lecture, you will be able to...

® Explain how image data is “seen” by machines

® ldentify challenges in applying computer vision to real world applications
® Explain the concept of feature in computer vision

® Explain standard Convolutional Neural Network (CNN) architectures
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Agenda

® What is computer vision?
® What do machines see?
¢ Important concepts in computer vision
= Filter
= Padding
= Stride
= Pooling
¢ Elements in deep learning computer vision algorithms
® How does a modern computer vision model look like?

® Outlook on today’s assignment
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Goal of computer vision

“Computer vision is the process of using computers to
extract from images useful information about the
physical world, including meaningful descriptions of physical
objects.”

[1] Encyclopedia of Computer Science, https://dl.acm.org/doi/10.5555/1074100.1074274
[2] F|gure https //unsplash com/photos/fRVPzBchSA
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How do humans see?

® Vision:

= Light enters through the cornea and
focused by the lens onto the retina

= In the retina the light is converted into
electrical signals

= These signals travel to the brain for
interpretation

® Information from both eyes enables a 3D
perception of the surroundings

® The resolution of the human eye is ~ 576
megapixels

sclera

retina
choroid

vitreous chamber
vitreous humor

anterior clmmbﬂ

aqueous humor oplic nerve

= suspensory ligaments

https://www.vedantu.com/question-answer/draw-a-diagram-of-the-human-eye-as-seen-in-a-class-10-biology-cbse-6080f647dfee7e00e205f722

r — Co-funded by fhe
1__|__i / ; i .':'-%-I\:"-_: ; e .'-I [rarimuis ||l|:l|;-.---:-l:l . -
= ¢ = = 1P Euiopean Un
5 LR TH e
o 1 _ e Machi
TUDelft e P LearnAthon

Microlecture MachineLearnAthon | Computer Vision

13 March 2024

6


Presenter Notes
Presentation Notes
The human eye is a complex sensory organ responsible for vision.
Light enters the eye through the cornea, passes through the pupil (controlled by the iris), and is focused by the lens onto the retina at the back of the eye.
The retina contains photoreceptor cells called rods and cones, which convert light into electrical signals that can be processed by the brain.
These electrical signals are transmitted via the optic nerve to the brain's visual cortex, where they are interpreted as images.
The brain integrates information from both eyes to create a three-dimensional representation of the surrounding environment.

the resolution of the human eye is 576 megapixels


What is the difference?

Figure of Ape: https://commons.wikimedia.org/wiki/File:Vespa_truck.jpg

Figure of Albert Einstein: https://co
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How can a computer differentiate an
iImage of “car” from a "human™?
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Digital images are composed of pixels

® Pixel basics
= Each pixel is the smallest unit of a digital image

= Pixels are organized in a grid to compose the
image

® Image resolution
= Resolution refers to the pixel count in an image

= Higher resolution means more pixels and more
detail

® Image formats One Pixel
= Common formats include JPEG and PNG

= These use compression to reduce file size

1__|_,| ____Picture courtesgy: "Bald gagle with fishi bydﬁ;itsl’_llife Service - Northeast Region is marked with Public Domain Mark 1.0.
: a1 P Loy .:’1§ﬁlt|: ‘.'ﬂ. 'ar Lrimimuis piageEsrm
P LU F sPgys  metumpen Microlecture MachineLearnAthon | Computer Vision

S&PF" | earnAthon

13 March 2024

10


https://www.flickr.com/photos/43322816@N08/5277661905
https://www.flickr.com/photos/43322816@N08/5277661905
https://www.flickr.com/photos/43322816@N08/5277661905
https://www.flickr.com/photos/43322816@N08/5277661905
https://www.flickr.com/photos/43322816@N08
https://www.flickr.com/photos/43322816@N08
https://www.flickr.com/photos/43322816@N08
https://www.flickr.com/photos/43322816@N08
https://www.flickr.com/photos/43322816@N08
https://www.flickr.com/photos/43322816@N08
https://www.flickr.com/photos/43322816@N08
https://www.flickr.com/photos/43322816@N08
https://www.flickr.com/photos/43322816@N08
https://www.flickr.com/photos/43322816@N08
https://www.flickr.com/photos/43322816@N08
https://creativecommons.org/publicdomain/mark/1.0/?ref=openverse
https://creativecommons.org/publicdomain/mark/1.0/?ref=openverse
https://creativecommons.org/publicdomain/mark/1.0/?ref=openverse
https://creativecommons.org/publicdomain/mark/1.0/?ref=openverse
https://creativecommons.org/publicdomain/mark/1.0/?ref=openverse
https://creativecommons.org/publicdomain/mark/1.0/?ref=openverse

Color spaces to represent images
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 RGB images consist of three matrices laid over each other, with values between 0-255
« Alternative, Gray scale images only have a single matrix with values between 0-1
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Are the pixel values of these two images similar?

Figure of Ape: https://commons.wikimedia.org/wiki/File:Vespa_truck.jpg
F|gure of BMW lsetta: https://commons.wikimedia. Ori/WIkI/FHe BMW Isetta (2015-08-29 3124 b Sp).JPG
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Challenges for representing images as matrices

® Processing images as matrices is
challenging using traditional computing

® Some of the challenges include...
= Viewpoint
= [llumination
= Intraclass variability
= Deformation
= Background clutter

= and many more...
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Challenges: Viewpoint

EEENERE

EEENENE

completely
different

EEENERE

EHENSNE

* Depending on the viewpoint, the same object has a completely different matrix

TL.I ik i .nﬁ:" I'.C- . .'-I ira I':" _- |:-I,::;-I_::-.:.I:I:|. II: _
id Ll Er S ok Machi Microlecture MachineLearnAthon | Computer Vision 13 March 2024 14
TUDelft L - s



Challenges: [llumination

https://www.freepik.com/free-photo/cute-cat-darkness_9932116.htm#fromView=search&page=1&position=6&uuid=e5b09c2b-079d-4815-9e€91-6a449816921c
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Challenges: Intraclass variability

¢ Oftentimes, we group things together that
not always look completely alike @@@.oﬁg@ @ﬁ
® We call this intraclass variability 1 e
| AR *@@@@@@@@@@Q
¢ Computers need to know that certain

depictions belong to the same class =)= q:[j
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Challenges: Deformation

Cimpeanu, R., & Papageorgiou, D. T. (2018). Three-dimensional high speed drop impact onto solid surfaces at arbitrary angles. International Journal of Multiphase Flow, 107, 192-207.
Co-Tunded By fhe
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Challenges: Background clutter

https://www.freepik.com/free-photo/closeup-shot-cat-green-leaves_17419966.htm#fromView=search&page=1&position=0&uuid=e231445c-0165-4d85-91a7-b86ed34e44af
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Agenda

® What is computer vision?
® What do machines see?
® Important concepts in computer vision
= Filter
= Padding
= Stride
= Pooling
¢ Elements in deep learning computer vision algorithms
® How does a modern computer vision model look like?
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How can a computer differentiate an
iImage of “car” from a "human™?
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Features of humans and cars

faces

Low-level
features

High-level
features
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We need to abstract relevant features from 1images

® To overcome these challenges, we need to represent the images robustly
® We need to find features that characterize objects in images
® But how can we find these features?

high-level features: mid-level features: low-level features:
facial structure eyes, ears, NOses edges, dark spots
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[1] Bertasius, G., et al (2015) “High-for-Low and Low-for-High: Efficient Boundary Detection from Deep Object Features and its Applications to High-Level Vision”
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Introduction to filters

® Filters are mathematical operators applied
to images to extract information and/or
change appearance

® The result of a filter is referred to as a
feature map

® In a convolution operation, a filter is
slided over an image to obtain feature
maps

® Convolution, kernel and filters are often
used as synonyms

Filters transform images to new
images (aka feature maps)

[1] Intuitively Understanding Convolutions for Deep Learning (Intuitively Understanding Convolutions for Deep Learning | by Irhum Shafkat | Towards Data Science)
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A simple example “Image”

1 1 1 0 0 1
1 1 1 0 0 1

Actual image: 6x6 Matrix representation: 6x6
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Conceptualize filters: What will happen if we apply the

average filter?

1 1 1 1
1 1 1 1
1 1 0 0
1 1 0 0
1 1 1 1
1 1 1 1

Some image: 6x6

179  1/9  1/9
179  1/9  1/9
179  1/9  1/9

moving average 3x3
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moving average 3x3

1 1
1 1
0 0
1 0 0
1 1 1
1 1 1

Some image: 6x6
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Conceptualize filters: What will happen if we apply the
average filter?

m
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Conceptualize filters: What will happen if we apply the

average filter?
1 1
1 1 1

moving average 3x3

Some image: 6x6
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Conceptualize filters: What will happen if we apply the

average filter?
1 0.88 H

Some image: 6x6

e |
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Conceptualize filters: What will happen if we apply the
average filter?

moving average 3x3

1

1

. 77 1 0.77
1/9  1/9 1/9 0.88 10 0
0.77 | 0.55 | 0.55
1/9  1/9 1/9
* T 0.77 | 0.55 | 0.55
1/9  1/9 1/9
0.88 | 0.77 | 0.77

Yy o
3
TUDelft

_ . Machii
LearnAthon

Some image: 6x6

What happened to the image? — It shrank
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Code example

https://qgithub.com/process-intelligence-research/Al-in-Bio-Chemical-Engineering-Lecture-Coding

s np

image = np.array([

np-array([[1/9, 1/9, 1/9],
1/9, 1/9, 1/9],

1/9, 1/9, 1/9]])

output = np.zeros({4, 4))

patch = image[i:i+3, j:j+3]

output[i, j] = np.sum{patch * filter)

print{output)

2. Machii
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https://github.com/process-intelligence-research/AI-in-Bio-Chemical-Engineering-Lecture-Coding
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How do express a filter mathematically?

® The filtering can be expressed as a sparse matrix multiplication:

h-1 w—1
5 e : : . h—-1 . -1
(CEY) =12 X wa iy +) s K+ )+ )

= Where I(x + i,y + j) is the pixel value at position (x + i,y + j),

= K(i+ %,j + WT_l) is the value of the kernel at (i + %,j + WT_l)

= And h, w are the kernel height and width respectively

.I.. e 2 i ; I . | 5 ATHE
1 X o s [ruTEe prgEsm
L, T
.- = L4 -
B At " L

(; [iipe ] .- Macr;n
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Image example: Effect of smoothing on noisy image
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Join the Vevox session

Go to vevox.app

E?

Enter the session ID: 199-929-003

Or scan the QR code

[=]

_ . o 13 March 33
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Join at: vevox.app  ID: 199-929-003

Select the resultant once the following filter 1s applied

A
B :
) ] 0% W 0 -1
i =T B)
- C ] . £ V3 0 -3 = =
\ 0% "W 0 -3 T Wi
D o [T
| 0% .
E | .
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Join at: vevox.app ID: 199-929-003

Select the resultant once the following filter is applied

T
%
B

| 0%

| 7.41%

| 11.11%

|U lo

. I |.'|.| nllllﬂ:l_hr: "]
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We can also apply other filters

1 1 1 What happens if we apply it?
1 1 1 1 1
1/3 o -1/3
1 1 1 1 1
1 1 1 K 1/3 0O -1/3 —
1 1
1 1 1 1/3 0o -1/3
1 1
1 1 1
1 ; U”U L f, e M . Microlecture MachineLearnAthon | Computer Vision 13 March 2024 36
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Presenter Notes
Presentation Notes
We apply the filter (3x3 matrix) on a image (6x6). The filter is designed to highlight VERTICAL edges; the left part and the right part of the filter are added. If the pixel values are equal (within a homogenous region of the image), this will make the sum zero. At edges, the pixel values on the left and right are different, this will make the sum non-zero.


We can also apply multiple kernels to get different
feature maps!
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Resulting images are inverted for visibility!
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We can also apply multiple kernels to get different
feature maps!

et Byt ' 14

—.-—'lwm 3 wa } |1I::.- | Bk
= - J__"-‘_L\—PU_T |[ "’,-l . () {iw ]

L= . i L " ' |
_ig‘ }h{ o ((‘:] : ‘ | ;-m) Chlred
- ,@jJ L T 1] " .{;:-) :

- 1[1]1
H\--T_-.-. [E]
0 ~.-.--L _"QEL .
Pomin Fropeyiamn . (" b =
‘ i ‘:": i Rl Fersh Perpphen:
“-___“_.;:T-"’ ‘ g"‘*z e ik
Resulting images are inverted for visibility!
h_] , .I-.-.._:I_." il :.ﬂ-'ﬂtp ‘_-"" L |rn|r|| :-grhr:

7 ;Ui 2 T@ I Microlecture MachineLearnAthon | Computer Vision 13 March 2024 38
TUDelft o =00 %%%L Athon



A filter operating on multiple channels

1 1 1088|077 | 0.77| 1

I_LIJJ]AM 1 1 [0771055|055| 1
11111
FEEE 1
* ;J;'H 1 1 10771055055 1
1
1

1 1 1088|077 | 0.77| 1

1 1 1 1 1 1

input images R
[height, width, channels] = [8,8,3] applied filter

resulting feature map
[height, width, channels] = [6,6,1]

[height, width, channels] = [3,3,1]

-i__l__i .. / . i .':'-é_-l\:"-_c . e ..'-I Ira ||.|.'.- 1 hl.-l :.l.l-.l'
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Multiple filters operating on multiple channels

1 1 1 1 1 1
-1
] ‘0 ‘1 113 1 1 0.88 | 0.77 | 0.77 1
-1
X  [1]o]a
1101k 1 1 0.77 | 0.55 | 0.55 1
- 1 1 0.77 | 0.55 | 0.55 1
-1
11411
A 1 1 10.88(077 (077 | 1
X [o]o]o l
& 1(1
1 1 1 1 1 1
i i R
height. width mEUt |m|age_s8 8 3 lied filt resulting feature map
[height, width, channels] =[8,8,3] = applied filters [height, width, channels] = [6,6,2]
[height, width, channels] = [3,3,2]
|||..* E, e Microlecture MachineLearnAthon | Computer Vision 13 March 2024 40
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Agenda

® What is computer vision?
® What do machines see?
® Important concepts in computer vision
= Filter
= Padding
= Stride
= Pooling
¢ Elements in deep learning computer vision algorithms
® How does a modern computer vision model look like?

® Outlook on today’s assignment
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How can we avoid making our image smaller? Padding

Padding

6*6 image

! o it o ey SN Co-funded by the
L) &n L T s Urimuis progresmi
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How can we avoid making our image smaller? Padding

® We can avoid shrinking our images by
artificially extending them

® There are several common padding
techniques:

*  Mirror padding

« Zero padding

« Constant padding
- Replicate padding

« Circular padding

Microlecture MachineLearnAthon | Computer Vision 13 March 2024 43
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How can we avoid making our image smaller? Padding

® We can avoid shrinking our images by
artificially extending them

® There are several common padding
techniques:

*  Mirror padding

« Zero padding

« Constant padding
- Replicate padding

« Circular padding
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How can we avoid making our image smaller? Padding

]
TUDelft

We can avoid shrinking our images by
artificially extending them

There are several common padding
techniques:

e
e f/

Mirror padding
Zero padding
Constant padding
Replicate padding

Circular padding

b Machil Microlecture MachineLearnAthon | Computer Vision
—a {AT]
LearnAthon
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How can we avoid making our image smaller? Padding

® We can avoid shrinking our images by
artificially extending them

® There are several common padding
techniques:

*  Mirror padding

« Zero padding

- Replicate padding
« Constant padding

« Circular padding
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How can we avoid making our image smaller? Padding

® We can avoid shrinking our images by
artificially extending them

® There are several common padding
techniques:

*  Mirror padding

« Zero padding

» Replicate padding
- Constant padding

« Circular padding
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How can we avoid making our image smaller? Padding

® We can avoid shrinking our images by
artificially extending them

® There are several common padding
techniques:

*  Mirror padding

« Zero padding

» Replicate padding
« Constant padding

- Circular padding
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Agenda

® What is computer vision?
® What do machines see?
® Important concepts in computer vision
= Filter
= Padding
= Stride
= Pooling
¢ Elements in deep learning computer vision algorithms
® How does a modern computer vision model look like?

® Outlook on today’s assignment
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Do need to apply our kernel to every pixel? No

® Idea: We only apply the kernel every n-th time, where n is our stride

111 e
111 T e
1 0 0 1 1 . ) 1
1 1 1 0 0 1 1 1 1 0 0 1
11111 P I R B R B
Tyttt 1 1 1 11
Stride = 1 Stride = 2
b i SR, S, s g
FuDelft bl g ﬁ) e Euepesn Microlecture MachineLeamAthon | Computer Vision 13 March 2024
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How can we reduce our image size quicker? Stride

® Idea: We only apply the kernel every n-th time, where n is our stride

Stride =1 Stride =2
N R 1 1 1] 1
141 ] 1 1 1 1+ 1 1
1 0 0 1 1 1 1 0 0 1
1 1 1 0 0 1 1 1 1 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

Stride = 1 Stride = 2
hi," g ﬁ: % ";,“ - Microlecture MachineLearnAthon | Computer Vision 13 March 2024 51
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How can we reduce our image size quicker? Stride

® Idea: We only apply the kernel every n-th time, where n is our stride

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 0
1 1 0 1 1 1 1 0 0 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
Stride = 1 Stride = 2
:m; 'gg%"é;;tm Microlecture MachineLearnAthon | Computer Vision 13 March 2024
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How can we reduce our image size quicker? Stride

® Idea: We only apply the kernel every n-th time, where n is our stride

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1
Stride = 1 Stride = 2
Y el _.\_EH“.} ‘_"4“ '-'.__‘F I il'unllilil|:|:|::':l-hm-'|:hr
R § S s  hefurmpesntn Microlecture MachineLearnAthon | Computer Vision 13 March 2024 53
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What does stride look like when applied?

1 1 1 0 0 1 v '’

1 1 1 0 0 1 ” y

moving average 2Xx2

:'_-].-l '_ . sat o -:ﬁ-l\;li : KLLL ....I = ::..'II:.::.I.::__:_I:':I.",
3 R g e Microlecture MachineLearnAthon | Computer Vision
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How can we calculate the output dimension of feature
maps?

® The output size (height and width) of the feature map is given by

_ _ L, —F+2P
output dimension = +1

S

® where... Bracket indicates the floor function (or

. . i i ) greatest integer function) that
= Ip:Input dimension (height, width of image) returns the greatest integer less than the

[ (2]
F: Filter size (height and width of kernel) function argument
P : Padding (Padding is usually applied symmetrically)
S . Stride

We expect you to know this

formula for the exam (by heart)!

[2] https://en.wikipedia.org/wiki/Floor_and ceilincl; functions
5 Co-Tunded by fhe
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Presenter Notes
Presentation Notes
The formula can be understood with the following rational: For a larger filter size, more pixels in the left and right will be removed. E.g. for a 5 pixel image with a 3 pixel wide kernel, we can only apply the kernel twice. The padding naturally increases our output dimension. If we apply a stride > 1, we lose output dimensions as well.

In mathematics, the floor function (or greatest integer function) is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the smallest integer greater than or equal to x, denoted ⌈x⌉ or ceil(x).

https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions

Example calculation

Layer Type Filter Padding Output Size
Input Layer Input Image None 224%224X3
Convolution 128 filters (3x3 stride 1) 1 -

1. Convolutions:

* I =224 h | I, —F + 2P 224 —3+2
e F=3 width = +1={ 1 ‘+1=224
L4 S:]_ S—
. P=1 | I,—F +2P 224 — 3 +2
— height = 5 +1={ n ‘+1=224

« Number of filters = 128

Output size = [height, width, number of channels] = 224x224x128

"

Height and width Channels
of output feature maps

-~ N " - o 13 March
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Agenda

® What is computer vision?
® What do machines see?
® Important concepts in computer vision
= Filter
= Padding
= Stride
= Pooling
¢ Elements in deep learning computer vision algorithms
® How does a modern computer vision model look like?

® Outlook on today’s assignment
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Motivation behind pooling

® There are can be many important features
in a single image

® If we apply all these filters, we will end up
with many feature maps

® So how can we reduce the dimensionality
of our feature maps?

® Goal of pooling:
= Keep important information

= Reduce dimensionality

Image taken from freepik.com (worker-surrounded-with-ﬁlass-beakers-filled-with-colorfuI-quuid)

ey R, Co-Tunded By fhe
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How can we summarize found feature maps? Pooling

Vo | Va

N

moving average 2x2

»
>

Average pooling
with kernel size 2

and stride 2
h‘l:-::'l":-..rl.lll 2ol ::qu ‘_""" r"'.- |rlur||::.:|:l|lll=::l-:|:hr
4 : E ?ﬁ) r m;::;: Microlecture MachineLearnAthon | Computer Vision
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How can we summarize found feature maps? Pooling

Va o Va

Va o Vi

moving average 2x2

»
>

Average pooling
with kernel size 2
and stride 2

Co-Tunded v fhe
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How can we summarize found feature maps? Pooling

a b
c d T
max(a, b, ¢ d)

»
>

2D-max pooling
with kernel size 2

and stride 2
h—l :_::.I-,:.._:'I.:I. il :Jﬁt} ‘_-"' '-',F Irlunllf‘:-:ﬁlll:s-:l-:l:hr
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How can we summarize found feature maps? Pooling

a b
c d T
max(a, b, ¢ d)

»
>

2D-max pooling
with kernel size 2

and stride 2
h—l :_::.I-,:.._:'I.:I. il :Jﬁt} ‘_-"' '-',F Irlunllf‘:-:ﬁlll:s-:l-:l:hr
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Example of applied max-pooling
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2D-max pooling
with kernel size 2
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Agenda

® What is computer vision?
® What do machines see?
¢ Important concepts in computer vision
= Filter
= Padding
= Stride
= Pooling
® Elements in deep learning computer vision algorithms
® How does a modern computer vision model look like?

® Outlook on today’s assignment
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Image classification tasks

® In image classification, we aim to get
probabilities for categories of image

® In our example, we have a dataset with two
classes, “human” and “car”

® More general, for a model m and image I,
we aim to get a prediction vector p

1 ()]
p2(1)

pe(D.

= containing a probability p; for each class
c of the dataset

*p=m() =

Model m

70% car
30% human

| -.lIU!!L' § E/ e g

f; iR M;r;i.l
TUDelft e ' :' LearnAthon
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Learning filters (aka convolutions) in convolutional
neural networks

® For image classification, we train the
convolutional neural network models

supervised .
* We use kernels with learnable weight ; -
matrices to extract features 1ol e
® The model is trained by minimizing the * |d - | 4==
error between prediction and ground truth R l
(see slide 33 in Lecture 2) :
, Feature map "
® Since the kernels are learned, we do not I
need to manually define them I
I
I
70% car = -
backprogate
error
|.||||.,I ; % S Microlecture MachineLearnAthon | Computer Vision 13 March 2024 66
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Modern computer vision models, 1.e., convolutional
neural networks gCNN r)e consist of.

..convolutions, used to extract features (edges, textures and patterns)
¢ ...pooling, used to reduce dimensionality by downsampling
® ...activation functions, used to introduce non-linearity

¢ ...sampling techniques such as stride and padding

- We do not need to manually define those filters. Instead, we let convolutional neural
networks learn them!
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How does this look like 1in a convolutional neural
network?

Nonlinearity

[ Pooling ]

Learned filters

To the next
layer

o F oo -f’“““% "1, s progees
p 1)
TU Delft LearnAthon
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Presenter Notes
Presentation Notes
…convolutions, used to extract features (edges, textures and patterns)
…pooling, used to reduce dimensionality by downsampling
…activation functions, used to introduce non-linearity
…sampling techniques such as stride and padding

 We do not need to manually define those filters. Instead, we let convolutional neural networks learn them!




How does this look like 1in a convolutional neural
network?

[ Pooling ]

Convolution || Nonlinearity
b |"_" P iy

Learned filters

To the next
layer
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How does this look like 1n a convolutional neural
network?

[ Convolution ] [ Nonlinearity ] [ Pooling ]

Learned filters

/'=—> ¥ ol / { To the next }

layer

= ) . /

i
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How does this look like 1n a convolutional neural
network?

[ Convolution ] [ Nonlinearity ] [ Pooling ]

Learned filters

/'=—> ¥ ol / | { To the next }

layer

= ) . /

i
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How does this look like 1n a convolutional neural
network?

[ Convolution ] [ Nonlinearity ] [ Pooling ]

Learned filters

/= | / To the next
_ | Ny INEEREREE : layer

—y /

. e Co-funded by the
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What do we do with the found feature maps?

Carnsiuten [ Nossaurty || Pocsing Cormuanton || Moty || Pocirg |

Learned filters Learned filters
=_’ P regn =_’ To P paml - [
n 2 ey / 3 \ - H
|
|

/ - =
\ } feature maps
Y What do we do with these
Repeated N times feature maps?
h_' tocheiect o, .:"ﬁ'tj I.r . r .;lIIIII-I-::I.r.-nI-:,:I-l.-: -
1 ;Ui 2 f/ S T Microlecture MachineLearnAthon | Computer Vision 13 March 2024 73
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We can flatten them into a vector and feed them to an
feed forward neural networks!

CNNs
— torch.flatten()
= x“\' o Prediction
e 7 : “Flowsheet”
- / T
input feature maps
Feed-forward
ANN

The MLP can be a regression model or a classification model

isi 13 March 2024 74
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Agenda

® What is computer vision?
® What do machines see?
¢ Important concepts in computer vision
= Filter
= Padding
= Stride
= Pooling
¢ Elements in deep learning computer vision algorithms
®* How does a modern computer vision model look like?

® Outlook on today’s assignment
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Let's look at an example: VGG16!

®* VGG stands for Visual Geometry Group, it
is a deep Convolutional Neural Net.

® The CNN is 16 layers ‘deep’ hence called

VGG16. VGG-16 CNN Architecture
® It is primarily used for object detection and
classification algorithm. 77~ "
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Image courtesy: https://learnopencv.com/tag/vgg16/
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https://learnopencv.com/tag/vgg16/
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This 1s how it looks in a modern architecture — VGG161
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Exercise: What are the intermediate feature map
dimensions?

64 filters, kernel = [3,3], padding = 1

input feature map size = [224, 224, 3]

+ 1= + 1 =224

Iy — F+2P‘ {224—3+2*1‘

Output Dimension = {

Resulting feature map size = [224,224,64]
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Exercise: What are the intermediate feature map
dimensions?

64 filters, kernel = [3,3], padding = 1

input feature map size = [224,224,64]

+ 1= + 1 =224

Iy — F+2P‘ {224—3+2*1‘

Output Dimension = {

Resulting feature map size = [224,224,64]
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Exercise: What are the intermediate feature map
dimensions?

Max-pool size = [2,2], stride = [2,2]

input feature map size = [224,224,64]

1 =

Ip— F+2P‘ {224 2+2x0

Output Dimension = { ‘ +1 =112

Resulting feature map size = [112, 112, 64]

g oo o = N

5
TUDelft
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Exercise: What are the intermediate feature map
dimensions?

128 filters, kernel = [3,3], padding = 1

input feature map size =[112,112,64]

+1=

59_F+2P‘ {112 —3+2x1

Output Dimension = { ‘ +1 =112

Resulting feature map size = [112, 112, 128]
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Exercise: What are the intermediate feature map
dimensions?

Max-pool size = [2,2], stride = [2,2]

input feature map size =[112,112,128]

+1 =056

IL,—F+2P
Pt J+1

1112—2+2*OJ
S

Output Dimension = l

Resulting feature map size = [56, 56, 128]
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Exercise: What are the intermediate feature map
dimensions?

256 filters, kernel = [3,3], padding = 1

input feature map size =[112,112,128]

I,—F+2P
”+J+1

l112—3+2*1J
S

Output Dimension = l +1=256

Resulting feature map size = [56, 56, 256]
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..and so on, until we reach the final dimensionality
Input [224,224,3] Feature map size [224,224,64]

Feature map size [112,112,128]
Feature map size [56,56,250]

Feature map size [28,28,512]
Feature map size [14,14,512]

Feature map size [7,7,512]

¥ LI

TR 3

TUDelft 2. Machil
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VGG16: Architecture

VGG16 already exists within PyTorch, so we

import by a function call. e (e

]
TUDelft

Comedd
Rl l)-2
- Comy2d-3
1m F‘ 0 r't Relll-4
= MaxPool 2d -~
import torch.nn as e

from torchvision import models
from torchsummary import summary

Loy Al =8

vegg = models.vggl6(
summary vgg, (3, 224, 224

=)
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Output shape

, 64, 224, 224]
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64, 224, 2 ;'.-1i
64, 224, 224]
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Agenda

® What is computer vision?
® What do machines see?
¢ Important concepts in computer vision
= Filter
= Padding
= Stride
= Pooling
¢ Elements in deep learning computer vision algorithms
® How does a modern computer vision model look like?

® Outlook on today’s assignment
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Outlook: Assignment 5 on computer vision

® In Assignment 5, you will...

¢ Implement computer vision operations by
yourself

® Test different architectures for classification
® Try out VGG-16!

® Work with a real dataset
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Thank you very much for your attention!
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